
(Project Narrative)

Structure and dynamics of working language

David I. Spivak

Abstract

Frederick A. Leve — Dynamical Systems and Control Theory

Richard D. Riecken — Science of Information, Computation, Learning, and Fusion

Tristan Nguyen — Information Assurance and Cybersecurity

(Abstract may be publicly released)

Language works in the sense of basic physics: it directs energy transfer, leading

to the displacement of material objects in space. Abstractly speaking, language

includes the DNA that directs biological life, natural languages like English that

direct our social interactions, and the high-level programming languages that direct

our technology.

In all cases, language is selected for its expressive power, communicative suc-

cess, and ease of processing. We claim that category theory is one of society’s

most impressive instances of these features to date. It offers schemas for handling

arbitrarily complex grammatical constructions in a staggering variety of applica-

tion areas. As it continues to be operationalized in compositional programming

libraries such as AlgebraicJulia for scientific and industrial use, category theory

will play an increasing role in coordinating humanity’s efforts toward solving its

biggest problems.

But category theory can also be used to study the dynamics of this process itself.

Robust control of material resources demands a symbol system and compositional

grammar that fits with the structural and combinatorial possibilities of those ma-

terial resources. The dynamics—a gears-level description of how compositional

language actually directs physical activity—seems to be a compilation process,

akin to how dependent type theory is compiled into intermediate languages like C,

then to Assembly, then to machine code, which directs coordinated changes to the

voltage-levels on a huge array of transistors. But how can we mathematically ac-

count for this process in general, not just as it pertains to computers, but abstractly

so that it also makes sense for other domains, such as systems biology?

With this grant we aim to clarify the multi-scale and substrate-independent

process of constructing and operationalizing languages. We will use category

theory, e.g. an approach to categorical systems theory using polynomial functors,

to describe the structure and dynamics of working language. We will also treat

categorical constructions—to the extent that they are operationalized in the real

world as working systems with material consequences—as an interesting test case

of how efficient language actually accomplishes its aims.

1



Contents

I Statement of Objectives 3

II Research effort 6

1 Introduction 7
1.1 Matter and Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Examples of matter-pattern symbols . . . . . . . . . . . . . . . . . . . . . 9

1.3 Compositionality and language formation . . . . . . . . . . . . . . . . . . 10

1.4 Finding the right abstractions . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Categorical structure and dynamics of working language 12
2.1 Polynomial functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Dynamic organizational systems . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Effects handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Fitness and selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Dependent type theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 User interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Synthetic programming and factored cognition using dependence cate-

gories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Co-design of cyberphysical systems . . . . . . . . . . . . . . . . . . . . . 18

2.9 Compositionality of attractor lattices . . . . . . . . . . . . . . . . . . . . . 19

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A Assurances 23
A.1 Environmental impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.2 Principle investigator (PI) time . . . . . . . . . . . . . . . . . . . . . . . . 23

A.3 Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.4 Special test equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.5 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.6 High performance computing availability . . . . . . . . . . . . . . . . . . 23

2



Part I

Statement of Objectives

3



Contents 4

Statement of Objectives

The purpose of this grant is to improve our formal understanding of how language

works in the real world. Soliciting support from three AFOSR programs—Dynamical

Systems and Control, Science of Information, Computation, Learning, and Fusion, and

Information Assurance and Cybersecurity—we aim to understand both the structure

and the scale-invariant dynamics by which language operates, matures, and consis-

tently provides a robust and high-assurance method for directing material resources.

Language is selected for its expressive power, communicative success, and ease of

processing [SS18]. This is true not only of natural languages, but also of the low-level

nucleotide language in DNA that codes for protein production and of the high-level

programming languages that run our computers. And it is true of mathematics itself,

a language which has been wildly successful in its ability to direct activity in the

material world: mathematical language forms the core of the science, engineering, and

technology which have transformed the face of planet Earth.

Within mathematics, category theory perhaps holds the title of being the most

concise-in-expression yet broad-in-application. For example, polynomial functors si-

multaneously provide a remarkably compressed and workable language both for low

level dynamics, e.g. as used in computational circuits [Jac17; Spi20], and for high level

type-theoretic programming constructs that control those circuits [Awo14; AN18].

Thus a refined purpose of this grant is to use category theory, e.g. polynomial

functors, to describe the dynamics of operational language at all scales. In particular,

we will aim to carry out the following objectives:

1. Continue developing the theory of polynomial functors in various categories to

model combinatorial assembly of interacting dynamical systems [Spi20; Smi21;

NS22] that can perform functions such as learning, prediction, and control.

2. Develop the theory and applications of dynamic operads [SS22b]—which cur-

rently include deep learning and prediction markets—to model other multi-scale

organizational systems.

3. Use selection categories to articulate the structure of programming language

compilation, e.g. compiling a REPL into Assembly or into machine code.

4. Model the behavior and/or fitness of dynamic populations for achieving context-

specific goals.

5. Use polynomial functors to model programming constructs such as dependent

type theories [Awo14; AN18] and user interfaces.

6. Mathematically model the dynamics of language as a compositional symbol sys-

tem that robustly directs the flow of material resources.

7. Provide a polynomial language for synthetic programming, as found in modern

tactics libraries, to solve programming tasks by assigning subtasks to agents

arranged according to a dependency poset [SS22a].

8. Categorically describe the behavior contracts which allow continuous dynamical

systems such as transistors to compute digitally, i.e. which provide the composi-

tionality of attractor lattices required for them to coordinate [Hor+14; Lib20].

https://topos.site/blog/2021/12/creating-new-categories-from-old-selection-categories/
https://github.com/TOTBWF/refinery
https://github.com/TOTBWF/refinery


Part II

Research effort

5



Introduction 6

1 Introduction

The purpose of this grant is to improve our formal understanding of how language

works in the real world. Soliciting support from three AFOSR programs—Dynamical

Systems and Control, Science of Information, Computation, Learning, and Fusion, and

Information Assurance and Cybersecurity—we aim to understand both the structure

and the scale-invariant dynamics by which language operates, matures, and consis-

tently provides a robust and high-assurance method for directing material resources.

To explain the purpose and the question we are asking as our guiding theme for

this grant, let’s begin more fundamentally.

1.1 Matter and Pattern

Matter and pattern are two of the most profound distinctions in the English language.

Etymologically, thewordmatter comes frommother (mater) and theword pattern comes

from father (pater).1 Like two parents, matter and pattern represent a fundamental

dichotomy: matter is the pure material, embedded in the world and unconcerned

with our ideas about it; pattern is pure structure, abstracted out of the world and

unconcerned with what substantiates it.

The transistor is an excellent example of where matter and pattern meet.2

Figure 1: A picture of an NPN transistor and its circuit diagram. Is a transistor
matter or pattern?

On the left of Fig. 1 we see the transistor as matter, a thing in the material world.

On the right we see the transistor as pattern, a logical idea. There does not seem to be a

perfect English word for this sort of fulcrum or janus-point which—like a transistor—is

simultaneously both matter and pattern, but we will use the term hylomorph, a term

which combines matter and form.3

1
Whilewewill sometimes refer to themother-father roots ofmatter-pattern, any relationwith received

intuitions about gender roles is not of interest here. What’s of interest is the fundamental nature of the

matter-pattern dichotomy and the way that these two “parents” work in concert to produce some of the

most interesting and consequential aspects of our world.

2
This example, andmy take on the philosophical question of wherematter and patternmeet, arose out

discussions with Scott Garrabrant, Sophie Libkind, Eliana Lorch, and Anna Salamon. The introductory

section of this grant takes liberally from a blog post I wrote in November 2022.

3Hylomorphism is a term going back to Aristotle, so we should note that our matter-pattern dichotomy

is related to but different than his matter-form dichotomy [Ain20]. In particular, our notion of pattern
emphasizes structure and mathematical describability.

https://topos.site/blog/2022/11/where-matter-and-pattern-meet/


1.1. Matter and Pattern 7

Mathematics is very much on the “pattern” side of the dichotomy, and it is reason-

able to almost equate math and pattern: mathematics is something like the articulation

of pattern. So we are equally interested in how math and matter relate.

It is now widely believed that all of math can be recorded and developed within

a proof assistant like Agda, Coq, Idris, or Lean. These programs run on computers,

computers are made of logic gates, logic gates are made of NAND gates, and NAND

gates are formed by attaching two transistors as shown in Fig. 2.

Figure 2: A circuit diagram forming a logical NAND gate from two transistors.

One can imagine the connection between math and matter, via proof assistants that

run on transistors, as taking place in a kind of hour-glass shape.

Figure 3: The transistor serves in a dual role, as both math and matter, and happens
to be close to the atomic scale in both: pattern-wise, it is half of a NAND gate (upon
which all the logic necessary for a computer proof assistant is built), and matter-wise,
as of late 2022, it is about 2 nanometers (the size of 10 silicon atoms) in length.

Mathematics is purely conceptual, and yet these concepts need to turn into mate-

rial action in order for the math to affect the world. For example, Claude Shannon

carried out some of his most influential work in the 1940s and 50s at Bell Labs. The

Bell Telephone company provided organizational infrastructure by which Shannon’s

purely mathematical ideas, e.g. on the speed and secrecy limits of message passing



1.2. Examples of matter-pattern symbols 8

[Sha48; Sha49], were put into practice. These ideas subsequently changed the material

conditions of the world, both by helping the US and its allies win World War II and by

laying a foundation for the information age that so thoroughly permeates society today.

The question that motivates this grant is: how does language, e.g. mathematics,

create a such profound differences in physical reality? Next we will discuss other

examples of symbols and how they compose to form working language. Then we will

explainwhat this has to dowith category theory and turn to the details of our proposed

project in Chapter 2.

1.2 Examples of matter-pattern symbols

Besides transistors, there are other examples of hylomorphs, i.e. condensed instantia-

tions of both matter and pattern.

DNA: As an acidic molecule embedded in 3D space that acts according to physical

laws, DNA is matter; but as an ordered sequence of four letters whose three-letter

words code for amino acids, it is pattern. Reading the DNA and elaborating

its meaning involves many other parts of the cell, and we could consider that

whole complex to be both matter and pattern, but DNA is more condensed, more

symbolic. Is DNA matter or pattern?

Signature: As the process ofmoving a pen across paper to forman ink stain, a signature

is matter; but as a token of people’s agreement to regulate their behavior, it is

pattern. As we sign a contract in good faith, we’ve set up our internal state in

such a way that we think it’s likely that our actions in the material world will

follow the pattern dictated by the contract. Is signature matter or pattern?

Grandma neuron: Neuroscientists say that a single neuron can code for a single con-

cept, e.g. neuron X fires if and only if one recognizes their own grandma [Gro02].

As a carbon-based object, a neuron is matter; but as representing one’s grandma,

it is pattern. If we look at just the grandma neuron, is it matter or pattern?

There are many such examples, and what is perhaps most striking is that there

appears to be some process by which examples are perpetually being created: hylo-

morphs keep getting formed and condensed in our world. Probably early life’s control

mechanism was far less condensed than “modern” DNA [SM16]. Whatever happened

in that prebiotic chemistry on the early Earth, the robust and effective language for

building custom proteins seems to have been repeatedly refined over eons. Similarly,

coordination of animal activity is ancient, but the condensation of this coordination into

a binding contract, or the hylomorphic signature itself, is quite new. And a similar thing

could be said about the grandma neuron or the transistor. In each case the hylomorph

came to exist by way of some sort of natural push or process urging the formation of

smaller, more concentrated symbols to instantiate pattern as matter or bind matter to

pattern.

We are not interested in these examples per se, but rather in the fact that there

appears to be a natural process by which hylomorphs are continually being formed and

condensed, and the fact that this process seems to work at all scales and regardless of



1.3. Compositionality and language formation 9

substrate. But there is another important feature that we have so far mostly left out of

the discussion: compositionality.

1.3 Compositionality and language formation

Transistors wouldn’t be nearly as important in our world today if they didn’t form latch

circuits and NAND gates, and hence logic gates, adder circuits, CPUs, etc. But all that

is purely conceptual, i.e. pattern. The thing that makes this grammar work is that it

simultaneously fits the material embodiment as well. The material transistors can be

arranged according to the conceptual pattern and there is a congruence or “functoriality”
there:4 just as the matter instantiates the pattern at the lowest level, so does the matter

instantiate the pattern at the higher levels too. Indeed, logic gates are made of NAND

gates wired together, both in pattern and in matter, and this analogy keeps holding

all the way up. My computer has been programmed to let me read this document,

but it is operating on physics in the material world, thanks to the robustness and

compositionality of the transistor hylomorph.

Similarly, a single contract is important, but anorganizationworkswith awhole slew

of contracts. When each is being decided upon, the composition of the whole—how all

those agreements are going to be carried out within the one organization—requires a

conceptual understanding of roles and activities, all of whichwill be instantiated by hu-

man bodies. Though far less formalized than the case of computers, the composition of

agreements within a company reflects the composition of movements by its employees.

The same compositionality story can be told about DNA or neurons. A single

nucleotide does not define DNA, nor does a single neuron define the brain. The

organization of nucleotides in DNA or of neurons in the brain is extremely important

for determining what the DNA or brain function will actually be. The point is that in

each case the function is carried out materially in accordance with high-level patterns.

This works because the embodied analogy between matter and pattern is compositional:
the arrangement of matter respects the connection patterns in these organized systems.

So we’re not only interested in the hylomorphic symbol at the center of matter

and pattern, but in the compositionality—the grammar—by which the composition

of conceptual patterns and the composition of material flows maintain their alignment

and can thus act in concert to produce the “offspring”we see all around us, in biological

life, organizations, technology, etc.

Let’s temporarily and loosely define aworking language to be a compositional symbol

system that maintains alignment between matter and pattern. Language occurs mate-

rially and affects thematerial world, and it is also patterned in that it follows conceptual

grammatical rules. When I say "pass the salt", 10
20
atoms including your arm and a salt

shaker move through space, resulting in some sodium chloride crystals arriving in my

bowl of soup. It is as though language transmits momentum: it makes objects move.

4Functoriality is a category-theoretic term-of-art indicating a structure-preserving relationship between

two different domains.



1.4. Finding the right abstractions 10

Language controls so much of our world, especially if we regard things like DNA as

language.

Thus the drive toward finding hylomorphic symbols that compositionally bridge

matter & pattern seems to be the same as, or at least tightly linked with, language

formation. So it is interesting to ask: by what process is language—including the

language of thought, the language of computation, the language of life, etc—formed?

This formation appears to be a natural multi-scale process, beginning at least as far

back as DNA, and continuing to this day.

Human natural language is selected for its expressive power, communicative suc-

cess, and ease of cognitive processing. It has been put forth that, in this selection

process, the replicating units are “schemas for handling grammatical constructions”

[SS18]. But the same is true for other languages too, e.g. mathematical languages and

programming languages; for example, Dĳkstra points out in a famous paper [Dĳ68]

that theGOTO statement should be considered harmful because its usemakes cognitive

processing difficult. We can postulate that even in the case of DNA, the ability for the

genome to express higher-level traits (not just one protein, but whole suites of interact-

ing proteins), such that the translation process is reliable and efficient, is selected for.

Hence at many scales and in many disparate substrates, working languages are formed

according to analogous criteria.

1.4 Finding the right abstractions

At this point, we may say that we have some philosophical explanation of how language

works: it offers a symbol system that tightly links matter and pattern, and does so in a

compositionalway. Whatwe aim for in this grant is a formal, mathematical explanation of

how language works, how it leads to such far-reaching yet finely-tuned displacements

of material objects in space. At the gears-level, what are the moment-by-moment

dynamics by which this multi-scale process unfolds? Moreover, within what sorts of

“mathematical worlds”would languages—compositional symbol systems—repeatedly

come into being?

A fairly good lay-person description of category theory is that it is the theory

of “schemas for handling grammatical constructions”. Indeed, just as predicted in

[SS18], these grammatical schemas arewhat replicate acrossmathematical and scientific

domains, and hence what (applied) category theory studies. Category theory is thus

an appropriate formalism for approaching our question.

However to do so requires that we find the right category-theoretic abstractions

with which to consider our question. The PI has been guided by—and looking for good

category-theoretic abstractions regarding—similar questions for many years. One im-

portant success criterion is that the abstraction shouldwork: it should be operationalized

in working code, or at least be transmitted to the minds of those who make material

change in the world.5

5
Many of the PI’s previous papers on categorical databases, metric realization, wiring diagram oper-

ads, and several other subjects have been transitioned to industry by a variety of technical companies. For



Categorical structure and dynamics of working language 11

Onemaynotice that in fact the above criterion—that our category-theoretic language

should lead to material change in the world—is in some sense a “fixed point” of our

entire proposal. The mathematics itself, at least to the extent it actually works, is an

example of working language, our object of study. We do not need to get too meta,

circular, or “loopy” [Hof07] about this. The reason we mention it is merely that some

of our proposed work in this grant application is aimed toward inventing powerful and

operational languages, e.g. categorical descriptions of dependent type theories based

on polynomial functors. Even if such work does not explain the dynamics of working

language, it is still relevant in that it instantiates the structure of working language.

In the rest of this grant proposal, we will explain various category-theoretic consid-

erations related to our central question, that which has been described above.

2 Categorical structure and dynamics of working language

The question of how compositional symbol systems work—the dynamics by which

grammatical structuring of hylomorphic symbols creates such profound effect in our

world, as well as by which such grammatical structures seem to perpetually arise and

mature as if by an invisible hand—is deep and worthy of devoted contemplation. This

question and the considerations of Chapter 1 constitute a guiding theme for this grant.

However, in order to clarify the subject matter and make observable progress, it is

valuable to approach the question from a number of distinct directions, to articulate

specific examples, and to formalize it in a variety of ways so as to find common themes

and bridges between these various approaches.

In the remaining sections, we offer some approaches that seem promising now, at

the outset of this endeavor.

2.1 Polynomial functors

Polynomial functors are a beloved formalism within category theory6 because of their

ubiquity and excellent formal properties. For example, the category Poly of polyno-

mial functors has four very useful monoidal products, as well as closures, coclosures,

limits, colimits, etc. Poly is a cornucopia of mathematical surprises; for example it is

striking that the most fundamental object in category theory—categories—are exactly

the comonoids in Poly.
With all this abundance, polynomial functors provide a foundation uponwhich one

can model a wide variety of subject areas, such as

example, the paper introducing the state-of-the-art dimension-reduction algorithmUMAP credits the PI’s

work: “We seek to address the issue of uniform data distributions on manifolds through a combination of

Riemannian geometry and the work of David Spivak [52] in category theoretic approaches to geometric

realization of fuzzy simplicial sets” [MHM18]. Many more examples of transitions are available upon

request.

6
Indeed, in the past two years Topos Institute has held twoworkshops dedicated entirely to polynomial

functors, whose speakers include a laundry list of leading category theorists, such as André Joyal, Ross

Street, Richard Garner, Steve Awodey, and many others.



2.2. Dynamic organizational systems 12

1. Open dynamical systems on a given “time” object, be it discrete, continuous, or

branching;7

2. Wiring diagrams

by which open dynamical systems can be composed [Spi20];

3. Cellular automata, e.g. as found in Conway’s Game of Life;8

4. Deep learning,Hebbian learning, predictionmarkets, and strategic games [Spi21b;

SS22b];9

5. Computational effects;10

6. Models of dependent type theory [Awo14; AN18];11

7. Tactics libraries for proof assistants; and

8. Database schemas, instances, migration functors, and aggregation [Spi21a].

Some of these have beenwell-articulated, by the PI and others, and others are in need of

further development. Wewill devote some time to developing the theory of polynomial

functors, as well as finding new applications of them.

In the following sections, we will explain various proposed extensions of these

formalisms and others, which will be useful for exploring the categorical structure and

dynamics of working language. Again, some of these themes are more directly related

to the problem of understanding how language works, whereas others are simply good

examples of language at work.

2.2 Dynamic organizational systems

In recent work [SS22b], the PI and collaborators have developed a category-theoretic

framework called dynamic organizational systems, e.g. dynamic operads, dynamic cate-

gories, dynamic monoidal categories, etc., which is relevant to our exploration. The

framework currently has only four examples: deep learning, prediction markets, non-

cooperative strategic games, and Hebbian learning.

In each case, there is amulti-scale system for updating theways that parts interact to

form wholes. For example to train a deep learning system, one creates an architecture

of artificial neurons. The wiring pattern itself, i.e. the connectivity of these neurons, is

an open dynamical system: it changes based on its current state and the values of the

7
Such a dynamical system is modeled by a pair (�, !), where � is a polynomial comonoid and

! : � 9 ) is a cofunctor to the time comonoid ). For example, for discrete time we use ) B yN, for

continuous time we use ) B yR, and for branching time we use some sort of cofree comonoid, e.g. for

binary-branching we use the cofree comonoid on y2
.

8
For details, see these slides.

9
For details, see this blog post on Hebbian learning and this blog post on strategic games.

10
For details see this blog post on effect handlers.

11
For other approaches to dependent type theory using polynomial functors, see https://topos.site/

blog/2022/09/nates-adjoint-5-tuple/.

https://topos.site/blog/2022/09/a-dynamic-monoidal-category-for-strategic-games/
https://topos.site/blog/2022/09/a-dynamic-monoidal-category-for-strategic-games/
https://topos.site/blog/2022/10/when-you-light-up-i-light-up-a-dynamical-monoidal-category-of-hebbian-learners/
https://topos.site/people/david-spivak/Pfunc2021.pdf#page=109
https://topos.site/blog/2022/10/when-you-light-up-i-light-up-a-dynamical-monoidal-category-of-hebbian-learners/
https://topos.site/blog/2022/09/a-dynamic-monoidal-category-for-strategic-games/
https://topos.site/blog/2022/09/nates-adjoint-5-tuple/
https://topos.site/blog/2022/09/nates-adjoint-5-tuple/


2.3. Effects handlers 13

training data and loss function as they propagate through the system. The gradient

descent / back propagation algorithm satisfies the definition a dynamic operad because

it is compositional: the composite of gradient descenders is again a gradient descender.

The same sort of description applies to prediction markets: you can form a predictor

as the composite of subordinate predictors, and the way that wealth is updated based

on correct or incorrect predictions is compositional. Again, this is described formally

in [SS22b].

The relevance of dynamic organizational systems to our proposed research project is

two-fold. First, anything with the structure and properties of a dynamic organizational

systemwill exemplify themain idea of our project. Namely, it will consist of a collection

of machines whose interaction pattern changes as they communicate with each other.

If we think of the interaction pattern—what’s connected to what—as the material con-

ditions, then we are witnessing how the language flowing between individual entities

causes change to those material conditions.

Second, wewill search for a particular dynamic organizational systemwithinwhich

we can define a more specific notion of language that flows between the machines,

namely one that is refined and condensed through the interaction process itself. Poly-

nomial coalgebras generalize finite state automata, which are well-known to model

regular languages. Thus there is good reason to suspect that self-rearranging sys-

tems of automata may be capable of this sort of language refinement. So if we can

find a sense in which this language-formation-and-refinement process is sufficiently

scale-invariant, i.e. compositional, then it would fit into the framework of dynamic

organizational systems.

2.3 Effects handlers

In imperative programming, each command has an effect on the state of the computer.

But effectful programming is difficult to reason about, because effects can happen

anywhere at any time, without much in the way of organizational structure. Hence

in functional programming—the sort of programming that has the best-developed

category-theoretic semantics—effects are considered “impure” and are handled by

monads [Mog91]. But in real-world applications, a large number of these monads need

to be stacked on top of each other, and the resulting programming constructs are again

awkward and tangled.

In order for category theory to help organize the complexity that arises when ef-

fectful programs are combined in these often complex ways, it may be useful to put

effect-handling at the center of our consideration, rather than at the periphery as though

it were a special or unusual case. Polynomial functors are quite versatile when it comes

to computational paradigms, such as Moore or Mealy machines [NS22], databases

[Spi21a], and dependent types [Awo14; AN18]. Thus it is not much of a surprise that

effects-handling also has a special form within the world of Poly.12 With polynomial

effects handlers, a category 2 can “run” programs on various copies of category 3, or

12
Indeed, given any pair of categories C,D, regarded as polynomial comonoids (2, &, �), (3, &, �), we



2.4. Fitness and selection 14

on multiple categories 31 , . . . , 3: , and aggregate the results. In particular, when these

categories 2, 38 are cofree, this framework is easily interpreted in the language of effect

handlers. The bicomodule point of view nicely models effect handlers and provides a

compositional theory by which to manipulate and combine them.

Effect handlers allow higher-level programming constructs to manipulate low-level

machine code. For example, we can construct an assembly language connecting a REPL

to a register machine in this way. Thus, even though this does not explain how these

languages are created or refined, the polynomial theory of effect handlers does offer an

exemplar of our research topic: categorically-structured working language.

2.4 Fitness and selection

It seems that the very same abstraction used in Section 2.3 can be used to model natural

selection. Indeed, a morphism < ⊳ 3
�−−→ 2 ⊳ < satisfying the comonad laws can be

identified with a cofunctor [
<
<⊳3

]
�
9 2

and the domain

[
<
<⊳3

]
of this map is a selection category.

E1 E2 E3 E4 E5 E6

F1 F2 F3 F4 F5 F6

G1 G2 G3 G4 G5 G6

H1 H2 H3 H4 H5 H6

I1 I2 I3 I4 I5 I6

E1 E6

F1 F6

G1 G6

H1 H6

I1 I6

Figure 4: A string of five composable morphisms in the selection category
[

y5

y5⊳D

]
(left), and their composite (right), obtained by simply following the paths. Each of
the arrows shown represents a map in the base category D. One sees that E1 and G1

were the most “fit”, in that they had progeny lasting until the sixth epoch, whereas
the others (F1 , H1 , I1) all went extinct.

can define an effect handler from 3 to 2 to be a polynomial functor < : Poly, equipped with a map

< ⊳ 3
�−−−→ 2 ⊳ <

satisfying the following comonad laws

3

2•

<

<

=

3

•

<

<

3

•
22

<

<

=

3

•

2 2

<

<

relating the counit & and comultiplication � of 2 and 3. This structure gives rise to a bicomodule 2

⊲ ⊳<⊳3
3.

https://topos.site/blog/2021/12/creating-new-categories-from-old-selection-categories/


2.5. Dependent type theory 15

The cofunctor � can encode selection criteria, e.g. a fitness function by which the

epochs are chosen. Moreover, preliminary work suggests that memory and environ-

mental context can be encoded as state, captured by the polynomial <’s position set

<(1),13 and this state can be used to decide the current fitness of a genotype.

Whereas it is uncommon to think of natural selection as compositional or as at all

related to language, the isomorphismbetween the formalismhere and that in Section 2.3

shows that there can be a hierarchical component to selection. Rather than imagining

nature as a monolithic entity that selects, we can encode various levels of selection, e.g.

societies selecting cultures that select tribes that select individuals that select habitual

behavior patterns, etc. In this way, smaller-scale units are seen as being like “machines”

that carry out the work of some larger-scale unit through a language which we can

formalize as an effect handler.

2.5 Dependent type theory

In a ground-breaking paper, Martin-Löf showed that all of (constructive) mathematics

can be formalized within the language of dependent types, which also serves as a kind

of programming language [Mar75]. In [Awo14; AN18], Steve Awodey and later his

PhD student Clive Newstead, showed that the syntax and rules of dependent type

theories are naturally modeled by polynomial monads and their pseudo-algebras. That

is, thinking of a polynomial

? =
∑
8:�

y-8 (1)

as being a family � of types, each of which has terms -8 , the various operations on

polynomials—sum, product, Dirichlet product, and substitution product—all have

meanings in terms of type families. For example, a cartesian monad structure

y
1−→ ? and (? ⊳ ?) Σ−→ ?

endows the type family ?with dependent sum types. Awodey andNewstead explained

how dependent products are obtained using a pseudo-algebra for the monad (1,Σ).
This inspired the PI to find an alternative approach, where the pseudo-algebra is

replaced by a distributive law. We have not formally proven this result, so doing so

would make a fairly straightforward task for this grant. To make it work one needs to

move to categorical polynomials in the sense of [Web07]. There, the polynomial set has
a Cartesian monad structure, and there is a distributive law

setop ⊳ set→ set ⊳ setop

of set over its opposite. We propose that this is a good definition of universe for

dependent type theory, and propose to show that other universes exist (e.g. cat).
It would also be good to combine or compare this with other work on polynomials

in dependent type theory, e.g. this approach based on ideas of Nate Soares and Jesse

13
In Fig. 4, the polynomial < = y5

has only <(1) = 1
5 = 1 position, but more generally the position-set

<(1) encodes the state set of the system.

https://topos.site/blog/2022/09/nates-adjoint-5-tuple/


2.6. User interfaces 16

Liptrap. Regardless of approach, dependent type theory offers perhaps themost concise

language for programming available today, andmodeling itwith polynomial functors—

which also model the low-level operations of Turing machines—may enable us to more

clearly see a full-stack example of language at work.

2.6 User interfaces

The common sort of user interface for a computer program consists of two parts: some

sort of output display—which might include visual, auditory, or haptic output—and

some menu of (a possibly huge number of) options from which the user selects an

input. For example, in aWindows program, one sees the screen display and can choose

from various menu options. In different displays, there may be different menu options

available. When the user is at a command line, we could consider the output to be

the message just displayed, and the input to be anything that can be typed into the

command line. Sometimes that is an arbitrary string of characters, whereas other times

it must be "yes" or "no".

Thus a user interface can be considered as a polynomial functor ? =
∑
8∈� y

-8
, whose

position-set � = ?(1) is that of all possible outputs (displays, sounds, etc.), and for each

position 8 : �, the set -8 of directions is the menu of all available options. The user

themselves can be modeled as having interface [?, y], the internal hom to y.

It can be useful for one user interface to automatically control a collection of :-many

other user interfaces, and this is accomplished using maps of polynomials, e.g.

?1 ⊗ · · · ⊗ ?: → @

Using polynomial functors to design better and more compositional user interfaces

appears to be a rich area for exploration.

2.7 Synthetic programming and factored cognition using dependence
categories

In synthetic programming, one presents the machine with a type and asks for a term of

it. For example, “give me a function that turns strings into integers" is presenting the

machine with a type, namely String → Int, and a term of it would be some actual

such function 5 . For example, 5 may be length, e.g. 5 (“hello”) = 5.

Often, the process of finding a term with some specified type can be broken up and

farmed out to a collection of other synthetic programs. For example, to find a term of

type �→ (� × �), one needs to find two simpler terms: one of type �→ � and one of

type �→ �; the results will then be paired. This approach to synthetic programming

is also behind factored cognition, where a higher-level reasoning task is broken up into

simpler reasoning tasks, which are farmed out and solved independently, after which

the solutions are combined to form a solution to the higher-level task. It turns out that

this workflow has a very nice description in Poly.
Just as in Section 2.5, a polynomial ? =

∑
8:� y

-8
consists of a collection � of types

and for each one a set -8 of terms. One can think of ? as a collection of synthetic



2.8. Co-design of cyberphysical systems 17

programming problems. A solution to these problems is a map of polynomials ? → y,

since such a map comprises precisely a term G8 : -8 for each type 8 : �.

A map ! : ? → ?1 ⊗ ?2 would constitute a way to take any problem (type) in ? and

produce a problem in each of ?1 and ?2, togetherwith away to take anypair of solutions,

given by ?1 and ?2, and return a solution for ?. The formula for all of this is precisely

what defines the map !. One can then nest this arbitrarily, e.g. ?1 → ?11 ⊗ ?12 ⊗ ?13 can

be a way to farm out ?1’s problems to its own subordinates. This may provide a new

formalization of Google’s Map-Reduce algorithm [DG08].

Moreover, one can do not only parallel composition, but also serial composition.

Once a cohort ?1 , . . . , ?: of synthetic sub-programmers has completed their tasks, the

results may be sent to a next synthetic sub-programmer ?′, whose solution would then

be sent to the master synthetic programmer ?. Such a scenario is captured by a map

? → (?1 ⊗ · · · ⊗ ?:) ⊳ ?′, and it should be clear that this scenario was entirely arbitrary

and that many such combinations are possible. Indeed, for any partially ordered set of

dependencies [SS22a], one obtains a synthetic programming setup.

We aim to explore this idea further as part of the research effort on this grant.

To see the relevance, note that each step in the above process could be understood

as a communication protocol—a convenient language for conveying a problem and

aggregating the solutions—among synthetic programmers (or factoring-cognizers) at

different levels.

2.8 Co-design of cyberphysical systems

Co-design [Cen15] is amathematical theory for collaborative design, e.g. collaboratively

designing a robot

Σ

Chassis

Motor Battery

Σ

≤

≤

≤ ≤

≤

≤

≤
Voltage

≤
Current

≤

Cost $ ≤

≤

≥
≥

Extra payload

Velocity

Cost $

Torque

Speed

Cost $

Motor

Weight
Battery

Weight

Cost $

The idea is that each box represents a design problem, a way to transform resources

as part of a larger economically-designed system. On the box’s left are the resources

provided by the box, and on its right are the resources required by the box. The arrows

between boxes indicate the economy by which the resources required by one box are

provided by another.

Mathematically, a design problem (box) represents a boolean profunctor % ',

i.e. a monotone map %op ×'→ {⊥,>}, where % is the poset of provided resources and

' is the poset of required resources. This profunctor indicates a feasibility relationship:
a true/false value for every pair (?, A), saying whether ? is feasibly provided given A.



2.9. Compositionality of attractor lattices 18

It’s a profunctor because if (?, A) is feasible then receiving a better A′ ≥ A or providing a

less-good ?′ ≤ ? will still render the situation feasible.

There is a natural way to use co-design to study interconnected dynamical systems.

Here, the resources are much more general than “current” or “torque”, but instead

are dynamical system behaviors, which we can imagine as behavioral flow charts.

A resource is a system that satisfies a certain behavior contract [SSV16; BVF21], i.e.

promises to follow the given flow chart. Such a behavior might be like that of a vending

machine, which takes money and selections and returns snacks, or a company that is

satisfying some sort of contractual obligation. The behavior contracts are modeled by

subterminal coalgebras—which form a logical system called a bi-Heyting algebra—and

we showed in this blogpost thatwhen subsystems arewired together, even if thatwiring

diagram changes in time, there is a feasibility relationship between the behaviors of the

inner systems and that of the outer system.

It would be worthwhile to formally write out the proofs, as well as to work out

examples, possibly with practitioners. This formalism offers a language for combining

precisely-written legal contracts, ensuring that if the subordinate entities satisfy their

contract, then our dynamic arrangement for shuttling outputs and inputs is sufficient

to guarantee that the subsuming entity will also satisfy its contract.

2.9 Compositionality of attractor lattices

A continuous dynamical system, such as a vector field, has a lattice of attractors or-

dered by containment. As the system evolves, it converges to a particular attractor,

independent of noise in the system. Hence attractors structure the observed dynamics

of the system and have been used to study how a continuous system is the “wetware” in

which a computation is implemented [Man+13; SB13; DSS22]. Attractors include fixed

points, limit cycles, and other invariant subsets; for example, the whole state space of

the system counts as an attractor.

In open continuous dynamical systems, the current input acts as a parameter that

controls the dynamics. For example, in the system of parameterized ODEs

¤G = 5 (G, D) G : R=

the parameter, in this case D, controls the vector field. In a fixed vector field, the system

once in the basin of attraction of a particular attractor remains there forever. However, in

a parameterized vector field, modulating the system’s parameters can move the system

from one attractor to another. In the context of computation, this movement between

attractors implements a discrete shift in the pattern domain, representing one step in

an algorithmic process.

In open systems, we consider not only inputs but also outputs: some function of

system -’s state can be output and sent to system . as input. The evolution of system

- therefore modulates the parameters used by system . and in doing so moves system

. between its different attractors. At the level of computation, composing such systems

would be completely unreliable if the input to . depended on the precise state G : - or

https://topos.site/blog/2022/04/co-design-of-dynamical-systems/


2.10. Summary 19

if the evolution of -’s attractors caused rapid, uncontrolled bifurcations in .. Instead

the attractor that system . is in should rely only on the attractor that system - is in.

It may take an infinitely long time for a state to reach some asymptote, but it is in

that asymptote’s basin of attraction the entire time. Thus system - communicating to

system. information about the attractor that- is in ismore robust than communicating

to . the precise state that - is in.

It appears then that the compositionality of continuous dynamical systems works

best when there are “spec sheets” that coordinate the attractor lattices of the various

interconnected systems. A spec sheet constitutes a simple sort of behavioral contract

for a system—what it expects as input and what it guarantees as output—that aligns

with its attractors. It can be shown that the computations implemented by two systems

only compose as expected if the systems are aligned by such a spec sheet. Therefore,

the spec sheet is a key ingredient in a compositional theory for continuous systems that

compute. We propose that spec sheets define a language that coordinates the high-level

operations between continuous systems.

In “artificial” systems—ones where human thinking dictates the connections be-

tween things—engineers are tasked with ensuring that the spec sheets of intercon-

nected systems align, or more precisely, avoid the ambiguities that lead to uncontrolled

bifurcations. We think of this as a language formation and refinement process, as it

allows different subsystems to communicate more effectively.

Onegoal of this project is to get amore formalunderstandingof that relationship and

its compositional properties as more complex systems are formed from simpler ones.

But this spec-sheet development and alignment process also exists in natural systems:

for one thing, humans and human processes can also be viewed as natural, subject

to the same laws as the rest of nature; but more generally, non-human processes have

repeatedly produced interaction patterns that avoid such ambiguities, e.g. in the coding

of amino acids from nucleotides [SM16]. We will consider high-level descriptions of

how such natural language formation and refinement processes can arise.

2.10 Summary

Language works—grammatical constructs carry pattern into material existence—at all

scales, fromDNA tomultinational organizations, and languages are continually refined

by natural and human-led processes. Finding the right abstractions by which to study

this process is crucial for seriously addressing today’s biggest challenges, enhancing

our capacity for accountability and enabling new engineering capabilities.

The above sections outline a variety of approaches to this study. Some take a deep

look at the dynamics of working language, others investigate the way that working

languages are created and refined. Still others consider existing exemplary working

languages or suggest new languages with clear category-theoretic descriptions.

Category theory is perhaps humanity’s best thought-compression language. As

such it is both an excellent formalism in which to articulate implementable descriptions

of our subject—how languages work in general—as well as a particularly interesting



2.10. Summary 20

model upon which we can focus our study while simultaneously producing useful

mathematical and computational artifacts.



References 21

References

[Ain20] Thomas Ainsworth. “Form vs. Matter”. In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta. Summer 2020. Metaphysics Research Lab,

Stanford University, 2020.

[AN18] Steve Awodey and Clive Newstead. “Polynomial pseudomonads and de-

pendent type theory”. In: arXiv (2018). eprint: 1802.00997.

[Awo14] Steve Awodey. “Natural models of homotopy type theory”. In: (2014).

eprint: arXiv:1406.3219.

[BVF21] Georgios Bakirtzis, ChristinaVasilakopoulou, andCodyHFleming. “Com-

positional cyber-physical systems modeling”. In: Electronic Notes in Theo-
retical Computer Science (2021).

[Cen15] Andrea Censi. “A mathematical theory of co-design”. In: (2015). eprint:

arXiv:1512.08055.

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data process-

ing on large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–

113.

[Dĳ68] EdsgerWDĳkstra. “Letters to the editor: go to statement considered harm-

ful”. In: Communications of the ACM 11.3 (1968), pp. 147–148.

[DSS22] Laura Driscoll, Krishna Shenoy, and David Sussillo. “Flexible multitask

computation in recurrent networks utilizes shared dynamical motifs”. en.

In: (Aug. 2022).

[Gro02] Charles G Gross. “Genealogy of the “grandmother cell””. In: The Neurosci-
entist 8.5 (2002), pp. 512–518.

[Hof07] Douglas R Hofstadter. I am a strange loop. Basic books, 2007.

[Hor+14] Clare Horsman, Susan Stepney, Rob C Wagner, and Viv Kendon. “When

does a physical system compute?” In: Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 470.2169 (2014), p. 20140182.

[Jac17] Bart Jacobs. Introduction to Coalgebra. Vol. 59. Cambridge University Press,

2017.

[Lib20] Sophie Libkind. “An Algebra of Resource Sharing Machines”. In: arXiv
(2020). eprint: 2007.14442.

[Man+13] ValerioMante,DavidSussillo,KrishnaV. Shenoy, andWilliamT.Newsome.

“Context-dependent computation by recurrent dynamics in prefrontal cor-

tex”. eng. In: Nature 503.7474 (Nov. 2013), pp. 78–84.

[Mar75] Per Martin-Löf. “An intuitionistic theory of types: Predicative part”. In:

Studies in Logic and the Foundations of Mathematics. Vol. 80. Elsevier, 1975,
pp. 73–118.

1802.00997
arXiv:1406.3219
arXiv:1512.08055
2007.14442


References 22

[MHM18] Leland McInnes, John Healy, and James Melville. “Umap: Uniform man-

ifold approximation and projection for dimension reduction”. In: arXiv
preprint arXiv:1802.03426 (2018).

[Mog91] EugenioMoggi. “Notions of computation andmonads”. In: Information and
computation 93.1 (1991), pp. 55–92.

[NS22] Nelson Niu and David I. Spivak. Polynomial functors: a general theory of
interaction. In preparation. 2022.

[SB13] David Sussillo andOmri Barak. “Opening the Black Box: Low-Dimensional

Dynamics inHigh-Dimensional RecurrentNeuralNetworks”. en. In:Neural
Computation 25.3 (Mar. 2013), pp. 626–649.

[Sha48] C. E. Shannon. “A mathematical theory of communication”. In: The Bell
System Technical Journal 27.3 (1948), pp. 379–423.

[Sha49] Claude E Shannon. “Communication theory of secrecy systems”. In: The
Bell system technical journal 28.4 (1949), pp. 656–715.

[SM16] Eric Smith and Harold J Morowitz. The origin and nature of life on earth: the
emergence of the fourth geosphere. Cambridge University Press, 2016.

[Smi21] Toby StClere Smithe. “Polynomial Life: the Structure ofAdaptive Systems”.

In: Proceedings of the 4th Annual Conference on Applied Category Theory. ACT.
Cambridge, UK: EPTCS, 2021.

[Spi20] David I. Spivak. “Poly:Anabundant categorical setting formode-dependent

dynamics”. In: arXiv (2020). eprint: 2005.01894.

[Spi21a] David I. Spivak. Functorial aggregation. 2021. arXiv: 2111.10968 [math.CT].

[Spi21b] David I. Spivak. “Learners’ languages”. In: Proceedings of the 4th Annual
Conference on Applied Category Theory. ACT. Cambridge, UK: EPTCS, 2021.

[SS18] Luc Steels and Eörs Szathmáry. “The evolutionary dynamics of language”.

In: Biosystems 164 (2018). Code Biology, pp. 128–137. issn: 0303-2647.

[SS22a] Brandon T. Shapiro and David I. Spivak. “Duoidal Structures for Compo-

sitional Dependence”. In: arXiv (2022). eprint: 2210.01962.

[SS22b] BrandonT. Shapiro andDavid I. Spivak. “Dynamic categories, dynamic op-

erads: From deep learning to prediction markets”. In: Electronic Proceedings
in Theoretical Computer Science (2022).

[SSV16] Patrick Schultz, David I Spivak, andChristina Vasilakopoulou. “Dynamical

systems and sheaves”. In: Applied Categorical Structures (2016), pp. 1–57.

[Web07] Mark Weber. “Familial 2-Functors and Parametric Right Adjoints”. In: The-
ory and Applications of Categories 18 (2007), Paper No. 22, 665–732.

2005.01894
https://arxiv.org/abs/2111.10968
2210.01962


Assurances

23



Assurances 24

A Assurances

A.1 Environmental impacts

This research is purely mathematical, and thus it will have no environmental impacts;

compliance with environmental statutes and regulations is thereby assured.

A.2 Principle investigator (PI) time

The principle investigator plans to spend 58.33% of his effort each year of the grant.

Current Projects and Pending Proposals The PI has a current AFOSR research grant,

FA9550-20-1-0348, which ends 2023/09/14. We aim for the project in the present

proposal to begin 2023/09/15.

The PI is also working on two DARPA projects, called ASKEM and PTG.

The PI is part of a pending proposal for a research grant paid for by Chevron.

A.3 Facilities

Topos provides basic office space and has a budget for books and other resources as

requested by its faculty and research staff.

A.4 Special test equipment

None.

A.5 Equipment

None.

A.6 High performance computing availability

Not needed.


	Statement of Objectives
	Research effort
	Introduction
	Matter and Pattern
	Examples of matter-pattern symbols
	Compositionality and language formation
	Finding the right abstractions

	Categorical structure and dynamics of working language
	Polynomial functors
	Dynamic organizational systems
	Effects handlers
	Fitness and selection
	Dependent type theory
	User interfaces
	Synthetic programming and factored cognition using dependence categories
	Co-design of cyberphysical systems
	Compositionality of attractor lattices
	Summary

	Assurances
	Environmental impacts
	Principle investigator (PI) time
	Facilities
	Special test equipment
	Equipment
	High performance computing availability



