METRIC REALIZATION OF FUZZY SIMPLICIAL SETS

DAVID I. SPIVAK

ABSTRACT. We discuss fuzzy simplicial sets, and their relationship to (a mild
generalization of) metric spaces. Namely, we present an adjunction between
the categories: a metric realization functor and fuzzy singular complex functor
that generalize the usual geometric realization and singular functors. Finally,
we show how these constructions relate to persistent homology.

The following document is a rough draft and may have (substantial) errors.

1. Fuzzy SIMPLICIAL SETS

Let I denote the topological space whose underlying set of points is (0,1] € R
and whose open sets are the intervals (0,a) where a € (0,1]. In other words, the
category of open sets and inclusions in I is equivalent to the partially ordered set
(0, 1] under the relation <. It has a Grothendieck topology given in the usual way,
so I has an “underlying Grothendieck site.” We may abuse notation by writing I
to denote the poset of open sets in the topological space I, either as a category or
as a site.

A sheaf S € Shv(]) on I is a functor S: I°P — Sets satisfying the sheaf condi-
tion. Explicitly, S consists of a set S([0,a)) for all a € (0, 1], which we choose to
denote by SZ¢, and restriction maps Poa: 520 5 §2@ for all b > a, such that if
¢>b>athen ppq0pep = pea, and such that, for any non-empty subset A C (0, 1]
with supremum a = sup(A), one has

5% = lim §2¢.
a’€A

A sheaf S is called a fuzzy set if for each b > a in (0, 1], the restriction map pp 4
is injective. Let Fuz denote the full subcategory of Shv(I) spanned by the fuzzy
sets. This definition is slightly different than Goguen’s [Gog], but is closely related.
See [Bar]. The difference between fuzzy sets T' and arbitrary sheaves S € Shv([)
is that, in T' two elements are either equal or they are not, whereas two elements
x #y € S5 may be equal to a certain degree, pa .(x) = pa.c(y) for some ¢ < a.

Suppose S € Shv(I) is a sheaf. For a € (0,1], let S(a) = S2% — colimys, SZ,
and note that S=% = colimp>4 ppo[S(b)]. If T is a fuzzy set, we can make this easier

on the eyes:
720 =[] T().
b>a
We write € S and say that = is an element of S, if there exists a € (0, 1] such
that € S(a); in this case we may say that x is an element of S with strength a.
The following definition may bring things down to earth.
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Definition 1.1. A classical fuzzy set is a pair (X,n) where X is a set and n: X —
(0,1] is a function. Given classical fuzzy sets (X,nx) and (Y,ny), morphism of
classical fuzzy sets between them is a function f: X — Y such that ny (f(z)) >
nx(z) for all z € X.

Let T denote a fuzzy set. Let T denote the set Uae(o,1] T2%, and define n: T —
(0,1] by n(z) = a if the following condition holds: x € T2* and for all a’ > a one
has © & T2 We refer to the pair (T, n) as the classical form for T. We refer to
T as the underlying set of T and to n as the characteristic function for T. This
construction is functorial and induces an isomorphism of categories between fuzzy
sets and classical fuzzy sets.

The following lemma says that, under a map of fuzzy sets, an element cannot be
sent to an element of lower strength.

Lemma 1.2. Suppose that S and T are fuzzy sets. If f: S — T is a morphism of
fuzzy sets, then for all a,b € (0,1], if x € S(a) then f(x) € T(b) for some b > a.

Proof. Since x € S2¢, we have by definition that f(x) € T2%, so x € T'(b) for some
b>a.
O

Lemma 1.3. The forgetful functor Fuz — Shv(I) is fully faithful and has a left
adjoint m. Thus Fuz is closed under taking colimits.

Proof. Given a sheaf S: I°P — Sets and a € (0,1], let (mS)2? = §2%/ ~, where
for z,2' € §2¢ we set ¥ ~ 2’ if there exists b < a such that p,p(z) = pap(2’).
Clearly, mS is a fuzzy set, and one checks that m is left adjoint to the forgetful
functor.
To compute the colimit of a diagram in Fuz, one applies the forgetful functor,
takes the colimit in Shv(7I), and applies the left adjoint.
O

Let A denote the simplicial indexing category—i.e. the category of nonempty
finite ordered sets—and denote its objects by [n] for n € N.

Definition 1.4. A fuzzy simplicial set is a functor A°? — Fuz. A morphism of
fuzzy simplicial sets is a natural transformation of functors. The category of fuzzy
simplicial sets is denoted sFuz.

A fuzzy simplicial set is a simplicial set in which every simplex has a strength.
A simplex has strength at most the minimum of its faces. All degeneracies of a
simplex have the same strength as the simplex.

A fuzzy simplicial set X : A°P — Fuz can be rewritten as a sheaf X : (AxI)°P —
Sets, where A has the trivial Grothendieck topology and A x I has the product
Grothendieck topology. We write X2 to denote the set X ([n],[0,a)).

For n € N and i € I, let A € sFuz denote the functor represented by (n,1%).
If i = [0,a) we may also write A%, to denote A?. Note that a map f: [n] — [m]
induces a unique map F': AZ, — A", if and only if a < b; otherwise there can be
no such F.

Any fuzzy simplicial set X can be canonically written as the colimit of its diagram
of simplices:
colim AT, =5 X

AL, =X
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2. UBER-METRIC SPACES

We define a category of uber-metric spaces, which are metric spaces except with
the possibility of d(z,y) = oo or d(z,y) = 0 for z # y.

Definition 2.1. An uber-metric space is a pair (X, d), where X is a set and d: X x
X — [0, 0], such that for all z,y,z € X,

(1> d(x,x) =0,

(2) d(z,y) =d(y,x), and

(3) d(z,z) < d(z,y) + d(y, 2).
Here we consider < oo and © 4+ 0o = 0o + 2 = oo for all x € [0,00]. We call d an
uber-metric or just a metric on X.

A morphism of uber-metric spaces, denoted f: (X,dx) — (Y,dy) is a function
f+ X — Y such that dy (f(z1), f(z2)) < dx(x1,z2) for all z1,20 € X. Such
functions are also called non-expansive.

These objects and morphisms define a category called the category of uber-metric
spaces and denoted UM.

Lemma 2.2. The category UM is closed under colimits.

Proof. We must show that UM has an initial object, arbitrary coproducts, and
coequalizers. The set ) is the initial object in UM.

Let A be a set and for all a € A, let (X,,d,) denote a metric space. Let X4
denote the set [,.4 X,; and let d4 denote the metric such that for all y,7" € X4,
if there exists a € A such that y,y’ € X, then da(y,y’) = da(y,v’), but if instead y
and gy’ are in separate components then d4(y,y’) = co. One checks that (X 4,d4)
is an uber-metric space and that it satisfies the universal property for a coproduct.

Finally, suppose that

f _
A—=X L> Y
is a coequalizer diagram of sets. Write  ~ z’ if there exists a € A with z =

fla),y = g(a); then Y = X/ ~ is the set of equivalence classes. If dx is a metric
on X, we define a metric ([Wik|]) dy on Y by

dy ([z], [2]) = gg’fq(dx(pl, q1) +dx(p2,q2) + - +dx(Pn;qn)),

where the infimum is taken over all pairs of sequences (pi,...,pn), (q1,-..,qn) Of
elements of X, such that p1 ~ x, ¢, ~ 2/, and p;y1 ~ ¢ forall 1 < i < n—1.
Again, one checks that (Y, dy) is an uber-metric space which satisfies the universal
property of a coequalizer.

O

3. METRIC REALIZATION

In order to define a metric realization functor Re: sFuz — UM, we first define
it on the representable sheaves in sFuz and then extend to the whole category using
colimits (i.e. using a left Kan extention).

Recall the usual metric on Euclidean space R™ and let RY; denote the m-tuples
all of whose entries are non-negative. Recall also that objects of I are of the form
[0,a) for 0 < a < 1. For an object ([n],[0,a)) € N x I, define Re(AZ,), as a set, to
be

{(x07$17 o axn) - Rn+1‘x0 +r14+tT, = 7lg(a)}7
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where Ig(a) means the log (base 2) of a. We take as our metric on Re(A”,) to be
that induced by its inclusion as a subspace of R*t1.

A morphism ([n],[0,a)) = ([m], [0,b)) exists if a < b, and in that case consists
of a morphism o: [n] — [m]. We define Re(o,a < b): Re(A”,) — Re(AT,) to be
the map

(:co,xl,...,xn)Hiigz Z Tigs Z Liyyoens Z X,

ip€a—1(0) i1€0—1(1) im€o—1(m)

Note that this map is non-expansive because 0 < a < b < 1 implies that lg(bg <1
We are ready to define Re on a general X as

Re(X) == Cé)th Re(AZ,).

AL, —
This functor preserves colimits, so it has a right adjoint, which we denote Sing: UM —
sFuz. It is given on Y € UM by

Sing(Y)5* = Homum (Re(AZ,),Y).

4. PERSISTENT HOMOLOGY

Let Ch>o denote the category of non-negatively graded chain complexes of
abelian groups (whose differential decreases degree). Given a fuzzy simplicial set
X, its persistence complex is a functor Px : I°? — Ch>(, which in degree n is

Px([0,0))n = Z{X3),

the free Z-module generated by the n-simplices of strength at least a in X. The
boundary maps are computed in the usual way. The homology of Px is the functor

H.(—;7Z)o Px: I°® — gVect,

where gVect is the category of graded vector spaces. In other words, for every
a € (0,1], one has homology groups HZ%(X;Z), and if a > b, one has a map
HZ*(X;Z) — HZ"(X;Z).

Given a finite metric space (M, dj;), one can form a fuzzy graph G(M) as follows.
On vertices, take G(M)5* = M, for all a € (0,1]. For edges, take

G(M)T" = {(m1,ma) € M x M|dp(my,ms) < —lg(a)}

Now of course, there is a left adjoint that builds a fuzzy simplicial set F(G) out
of a fuzzy graph G, using cliques. Precisely, we have

F(G)%“ = Hom(skl(A%a), G),

where sk; denotes the 1-skeleton functor from fuzzy simplicial sets to fuzzy graphs.
Taking our original finite metric space M, form F(G(M)), take its persistent
homology in the above sense.

Question 4.1. and I wonder if this agrees with its persistent homology in the sense
I heard about from Gunnar Carlsson.

Question 4.2. Is there any reasonable way in which we could take a homotopy
colimit of our fuzzy simplicial set X: (A x I)°? — Sets and get back something
reasonable? (For simplicial sets Y, the homotopy colimit of the composite Y: A —
Sets — Top gives the “right” answer, the geometric realization of Y.)
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APPENDIX A. PROBABILISTIC SIMPLICIAL SETS

One might want to consider fuzzy simplicial sets X in the following way: for each
n-simplex x € X,,, consider n,(z) € (0,1] as “the probability that x is in X.” Now
simulate X by writing down lots of (non-fuzzy) simplicial sets X’ whose simplices
are chosen from X with the indicated probabilities.

Unfortunately, this does not make much sense. For example, consider the fuzzy
simplex AL .. This has two O-simplices and a single 1-simplex, each with value
%. To simulate it, one would flip a coin to decide whether to include each vertex
and then, only if both vertices were included, flip another coin to decide whether
to include the 1-simplex. Thus the 1-simplex is in the simulated simplicial set
with probability % — this does not seem like a good notion, because the natural
understanding of AL . is that each of the three simplices has a probability of %,
whatever that might mean.

Notice that M := (0,1] is a monoid under multiplication.

Definition A.1. Let X = (X,nx) and Y(Y, ny) denote fuzzy sets. We define their
tensor product X ® ) to be the fuzzy set (X x Y,n), where n(z,y) = nx(x)ny(y)
for each x € X,y € Y. There is an obvious map of fuzzy sets ¥ @ Y — X x ).

Let X denote a fuzzy simplicial set. Recall that the face maps induce, for every
n € N, a map of fuzzy sets d: X,, —» X,_1 X --- X X,,_1, where there are n + 1
copies in the product.

Definition A.2. A probabilistic simplicial set is a fuzzy simplicial set X such that
for each integer n > 1 there exists a dotted lift in the diagram

(Xn71)®n+1

7
-
-
re

re

xXn+1
XTL T (Xn—l) .

In other words, the value of an n-simplex in a probabilistic simplicial set is at
most the product of the values of its faces. Now we can define an appropriate
concept of simulation.

(Caveat: my understanding of probability theory is limited, and this will be
obvious when reading the following definition.)

Definition A.3. Given a set X and a function n: X — (0,1], an simulation of
(X,n) is a subset X’ C X such that for each x € X, the probability that x € X’ is
n(z).

Definition A.4. Let (X,n) denote a fuzzy simplicial set, and for each n € N, let

M Xy — (0,1] denote the characteristic function of level n. A simulation of (X, n)
is a simplicial set X’ with the following properties:

e The set X|; of 0-simplices is a simulation of (Xo, 7o)

e Let X7 denote the fiber product in the diagram of sets

X/ X,

.

X(’)XX(/)HX()XX(),




6 DAVID I. SPIVAK

the set of possible 1-simplices given the simulation X{, and let nf: X{ —

(0, 1] be defined by n{(x) = W%M for each x € X{'. Now define
X] to be a simulation of X7

e Inductively, we can define a fuzzy set (X!, 7)) given a simulation X/ _; of

the previous stage, and then simulate it as X,.

Question A.5. Suppose that X is a probabilistic simplicial set. There are two ways
to imagine what should be the Betti numbers of X. The first is to take Betti
numbers of the persistence complex Px ([0, a)) as a function of a € (0,1], and then
compute the expected values — i.e. integrate this function over the unit interval.
The second way is to simulate the fuzzy simplicial set X and take averages. Is there
any relationship between these approaches?
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