
METRIC REALIZATION OF FUZZY SIMPLICIAL SETS

DAVID I. SPIVAK

Abstract. We discuss fuzzy simplicial sets, and their relationship to some-

thing like metric spaces. Namely, we present an adjunction between the cate-

gories: a metric realization functor and fuzzy singular complex functor.
The following document is a rough draft and may have (substantial) errors.

1. Fuzzy simplicial sets

Let I denote the Grothendieck site whose objects are initial open intervals con-
tained in the half-open unit interval [0, 1) ∈ R, whose morphisms are inclusions of
open subsets, and whose covers are open covers. In other words, as a category, I is
equivalent to the partially ordered set (0, 1] under the relation ≤.

A sheaf S ∈ Shv(I) on I is a functor S : Iop → Sets satisfying the sheaf condi-
tion. Explicitly, S consists of a set S([0, a)) for all a ∈ (0, 1], which we choose to
denote by S≥a, and restriction maps ρb,a : S

≥b → S≥a for all b ≥ a, such that if
c ≥ b ≥ a then ρb,a ◦ ρc,b = ρc,a, and such that for all a ∈ I, one has

S≥a ∼= lim
a′<a

S≥a′
.

A sheaf S is called a fuzzy set if for each b ≥ a in (0, 1], the restriction map ρb,a
is injective. Let Fuz denote the full subcategory of Shv(I) spanned by the fuzzy
sets. This definition is slightly different than Goguen’s [?], but is closely related.
See [?]. The difference between fuzzy sets T and arbitrary sheaves S ∈ Shv(I)
is that, in T two elements are either equal or they are not, whereas two elements
x ̸= y ∈ S≤a may be equal to a certain degree, ρa,c(x) = ρa,c(y) for some c < a.

Suppose S ∈ Shv(I) is a sheaf. For a ∈ (0, 1], let S(a) = S≥a − colimb>a S
≥b,

and note that S≥a = colimb≥a ρb,a[S(b)]. If T is a fuzzy set, we can make this easier
on the eyes:

T≥a =
∐
b≥a

T (b).

We write x ∈ S and say that x is an element of S, if there exists a ∈ (0, 1] such
that x ∈ S(a); in this case we may say that x is an element of S with strength a.

The following lemma says that, under a map of fuzzy sets, an element cannot be
sent to an element of lower strength.

Lemma 1.1. Suppose that S and T are fuzzy sets. If f : S → T is a morphism of
fuzzy sets, then for all a, b ∈ (0, 1], if x ∈ S(a) then f(x) ∈ T (b) for some b ≥ a.

Proof. Since x ∈ S≥a, we have by definition that f(x) ∈ T≥a, so x ∈ T (b) for some
b ≥ a.

□
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Lemma 1.2. The forgetful functor Fuz → Shv(I) is fully faithful and has a left
adjoint m. Thus Fuz is closed under taking colimits.

Proof. Given a sheaf S : Iop → Sets and a ∈ (0, 1], let (mS)≥a = S≥a/ ∼, where
for x, x′ ∈ S≥a, we set x ∼ x′ if there exists b ≤ a such that ρa,b(x) = ρa,b(x

′).
Clearly, mS is a fuzzy set, and one checks that m is left adjoint to the forgetful
functor.

To compute the colimit of a diagram in Fuz, one applies the forgetful functor,
takes the colimit in Shv(I), and applies the left adjoint.

□

Let ∆ denote the simplicial indexing category, and denote its objects by [n] for
n ∈ N.

Definition 1.3. A fuzzy simplicial set is a functor ∆op → Fuz. A morphism of
fuzzy simplicial sets is a natural transformation of functors. The category of fuzzy
simplicial sets is denoted sFuz.

A fuzzy simplicial set is a simplicial set in which every simplex has a strength.
A simplex has strength at most the minimum of its faces. All degeneracies of a
simplex have the same strength as the simplex.

A fuzzy simplicial setX : ∆op → Fuz can be rewritten as a sheafX : (∆×I)op →
Sets, where ∆ has the trivial Grothendieck topology and ∆ × I has the product
Grothendieck topology. We write X<a

n to denote the set X([n], [0, a)).
For n ∈ N and i ∈ I, let ∆n

i ∈ sFuz denote the functor represented by (n, i).
If i = [0, a) we may also write ∆n

<a to denote ∆n
i . Note that a map f : [n] → [m]

induces a unique map F : ∆n
<a → ∆m

<b if and only if a ≤ b; otherwise there can be
no such F .

Any fuzzy simplicial setX can be canonically written as the colimit of its diagram
of simplices:

colim
∆n

<a→X
∆n

<a

∼=−−−→ X

2. uber-metric spaces

We define a category of uber-metric spaces, which are metric spaces except with
the possibility of d(x, y) = ∞ or d(x, y) = 0 for x ̸= y.

Definition 2.1. An uber-metric space is a pair (X, d), where X is a set and d : X×
X → [0,∞], such that for all x, y, z ∈ X,

(1) d(x, x) = 0,
(2) d(x, y) = d(y, x), and
(3) d(x, z) ≤ d(x, y) + d(y, z).

Here we consider x ≤ ∞ and x+∞ = ∞+ x = ∞ for all x ∈ [0,∞]. We call d an
uber-metric or just a metric on X.

A morphism of uber-metric spaces, denoted f : (X, dX) → (Y, dY ) is a function
f : X → Y such that dY (f(x1), f(x2)) ≤ dX(x1, x2) for all x1, x2 ∈ X. Such
functions are also called non-expansive.

These objects and morphisms define a category called the category of uber-metric
spaces and denoted UM.

Lemma 2.2. The category UM is closed under colimits.
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Proof. We must show that UM has an initial object, arbitrary coproducts, and
coequalizers. The set ∅ is the initial object in UM.

Let A be a set and for all a ∈ A, let (Xa, da) denote a metric space. Let XA

denote the set
∐

a∈A Xa; and let dA denote the metric such that for all y, y′ ∈ XA,
if there exists a ∈ A such that y, y′ ∈ Xa then dA(y, y

′) = da(y, y
′), but if instead y

and y′ are in separate components then dA(y, y
′) = ∞. One checks that (XA, dA)

is an uber-metric space and that it satisfies the universal property for a coproduct.
Finally, suppose that

A
f //
g
// X

[−] // Y

is a coequalizer diagram of sets. Write x ∼ x′ if there exists a ∈ A with x =
f(a), y = g(a); then Y = X/ ∼ is the set of equivalence classes. If y = m(x). If dX
is a metric on X, we define a metric ([?]) dY on Y by

dY ([x], [x
′]) = inf(dX(p1, q1) + dX(p2, q2) + · · ·+ dX(pn, qn)),

where the infemum is taken over all pairs of sequences (p1, . . . , pn), (q1, . . . , qn) of
elements of X, such that p1 ∼ x, qn ∼ x′, and pi+1 ∼ qi for all 1 ≤ i ≤ n − 1.
Again, one checks that (Y, dY ) is an uber-metric space which satisfies the universal
property of a coequalizer.

□

3. Metric realization

In order to define a metric realization functor Re : sFuz → UM, we first define
it on the representable sheaves in sFuz and then extend to the whole category using
colimits (i.e. using a left Kan extention).

Recall the usual metric on Euclidean space Rm and let Rm
≥0 denote the m-tuples

all of whose entries are non-negative. Recall also that objects of I are of the form
[0, a) for 0 < a ≤ 1. For an object ([n], [0, a)) ∈ N× I, define Re(∆n

<a), as a set, to
be

{(x0, x1, . . . , xn) ⊂ Rn+1|x0 + x1 + · · ·+ xn = 1− a}
We take as our metric on Re(∆n

<a) to be that induced by its inclusion as a subspace
of Rn+1.

A morphism ([n], [0, a)) → ([m], [0, b)) exists if a ≤ b, and in that case consists
of a morphism σ : [n] → [m]. We define Re(σ, a ≤ b) : Re(∆n

<a) → Re(∆m
<b) to be

the map

(x0, x1, . . . , xn) 7→
1− b

1− a

 ∑
i0∈σ−1(0)

xi0 ,
∑

i1∈σ−1(1)

xi1 , . . . ,
∑

im∈σ−1(m)

xim

 .

Note that this map is non-expansive because 1− b ≤ 1− a.
We are ready to define Re on a general X as

Re(X) := colim
∆n

<a→X
Re(∆n

<a).

This functor preserves colimits, so it has a right adjoint, which we denote Sing : UM →
sFuz. It is given on Y ∈ UM by

Sing(Y )<a
n = HomUM(Re(∆n

<a), Y ).
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