METRIC REALIZATION OF FUZZY SIMPLICIAL SETS

DAVID I. SPIVAK

ABSTRACT. We discuss fuzzy simplicial sets, and their relationship to something like metric spaces. Namely, we present an adjunction between the categories: a metric realization functor and fuzzy singular complex functor.

The following document is a rough draft and may have (substantial) errors.

1. Fuzzy simplicial sets

Let I denote the Grothendieck site whose objects are initial open intervals contained in the half-open unit interval $[0,1) \in \mathbb{R}$, whose morphisms are inclusions of open subsets, and whose covers are open covers. In other words, as a category, I is equivalent to the partially ordered set (0,1] under the relation \leq .

A sheaf $S \in \mathbf{Shv}(I)$ on I is a functor $S: I^{\mathrm{op}} \to \mathbf{Sets}$ satisfying the sheaf condition. Explicitly, S consists of a set S([0, a)) for all $a \in (0, 1]$, which we choose to denote by $S^{\geq a}$, and restriction maps $\rho_{b,a}: S^{\geq b} \to S^{\geq a}$ for all $b \geq a$, such that if $c \geq b \geq a$ then $\rho_{b,a} \circ \rho_{c,b} = \rho_{c,a}$, and such that for all $a \in I$, one has

$$S^{\geq a} \cong \lim_{a' < a} S^{\geq a'}.$$

A sheaf S is called a *fuzzy set* if for each $b \ge a$ in (0, 1], the restriction map $\rho_{b,a}$ is injective. Let **Fuz** denote the full subcategory of **Shv**(I) spanned by the fuzzy sets. This definition is slightly different than Goguen's [?], but is closely related. See [?]. The difference between fuzzy sets T and arbitrary sheaves $S \in \mathbf{Shv}(I)$ is that, in T two elements are either equal or they are not, whereas two elements $x \neq y \in S^{\leq a}$ may be equal to a certain degree, $\rho_{a,c}(x) = \rho_{a,c}(y)$ for some c < a.

Suppose $S \in \mathbf{Shv}(I)$ is a sheaf. For $a \in (0, 1]$, let $S(a) = S^{\geq a} - \operatorname{colim}_{b \geq a} S^{\geq b}$, and note that $S^{\geq a} = \operatorname{colim}_{b \geq a} \rho_{b,a}[S(b)]$. If T is a fuzzy set, we can make this easier on the eyes:

$$T^{\geq a} = \coprod_{b \geq a} T(b).$$

We write $x \in S$ and say that x is an element of S, if there exists $a \in (0, 1]$ such that $x \in S(a)$; in this case we may say that x is an element of S with strength a.

The following lemma says that, under a map of fuzzy sets, an element cannot be sent to an element of lower strength.

Lemma 1.1. Suppose that S and T are fuzzy sets. If $f: S \to T$ is a morphism of fuzzy sets, then for all $a, b \in (0, 1]$, if $x \in S(a)$ then $f(x) \in T(b)$ for some $b \ge a$.

Proof. Since $x \in S^{\geq a}$, we have by definition that $f(x) \in T^{\geq a}$, so $x \in T(b)$ for some $b \geq a$.

This project was supported in part by a grant from the Office of Naval Research: N000140910466.

DAVID I. SPIVAK

Lemma 1.2. The forgetful functor $\mathbf{Fuz} \to \mathbf{Shv}(I)$ is fully faithful and has a left adjoint m. Thus \mathbf{Fuz} is closed under taking colimits.

Proof. Given a sheaf $S: I^{\text{op}} \to \text{Sets}$ and $a \in (0,1]$, let $(mS)^{\geq a} = S^{\geq a} / \sim$, where for $x, x' \in S^{\geq a}$, we set $x \sim x'$ if there exists $b \leq a$ such that $\rho_{a,b}(x) = \rho_{a,b}(x')$. Clearly, mS is a fuzzy set, and one checks that m is left adjoint to the forgetful functor.

To compute the colimit of a diagram in \mathbf{Fuz} , one applies the forgetful functor, takes the colimit in $\mathbf{Shv}(I)$, and applies the left adjoint.

Let Δ denote the simplicial indexing category, and denote its objects by [n] for $n \in \mathbb{N}$.

Definition 1.3. A fuzzy simplicial set is a functor $\Delta^{\text{op}} \to \text{Fuz}$. A morphism of fuzzy simplicial sets is a natural transformation of functors. The category of fuzzy simplicial sets is denoted **sFuz**.

A fuzzy simplicial set is a simplicial set in which every simplex has a strength. A simplex has strength at most the minimum of its faces. All degeneracies of a simplex have the same strength as the simplex.

A fuzzy simplicial set $X: \Delta^{\text{op}} \to \mathbf{Fuz}$ can be rewritten as a sheaf $X: (\Delta \times I)^{\text{op}} \to \mathbf{Sets}$, where Δ has the trivial Grothendieck topology and $\Delta \times I$ has the product Grothendieck topology. We write $X_n^{\leq a}$ to denote the set X([n], [0, a)).

For $n \in \mathbb{N}$ and $i \in I$, let $\Delta_i^n \in \mathbf{sFuz}$ denote the functor represented by (n, i). If i = [0, a) we may also write $\Delta_{<a}^n$ to denote Δ_i^n . Note that a map $f : [n] \to [m]$ induces a unique map $F : \Delta_{<a}^n \to \Delta_{<b}^m$ if and only if $a \leq b$; otherwise there can be no such F.

Any fuzzy simplicial set X can be canonically written as the colimit of its diagram of simplices:

$$\operatorname{colim}_{\Delta_{< a}^n \to X} \Delta_{< a}^n \xrightarrow{\cong} X$$

2. UBER-METRIC SPACES

We define a category of uber-metric spaces, which are metric spaces except with the possibility of $d(x, y) = \infty$ or d(x, y) = 0 for $x \neq y$.

Definition 2.1. An *uber-metric space* is a pair (X, d), where X is a set and $d: X \times X \to [0, \infty]$, such that for all $x, y, z \in X$,

- (1) d(x, x) = 0,
- (2) d(x, y) = d(y, x), and
- (3) $d(x,z) \le d(x,y) + d(y,z)$.

Here we consider $x \leq \infty$ and $x + \infty = \infty + x = \infty$ for all $x \in [0, \infty]$. We call d an *uber-metric* or just a *metric* on X.

A morphism of uber-metric spaces, denoted $f: (X, d_X) \to (Y, d_Y)$ is a function $f: X \to Y$ such that $d_Y(f(x_1), f(x_2)) \leq d_X(x_1, x_2)$ for all $x_1, x_2 \in X$. Such functions are also called *non-expansive*.

These objects and morphisms define a category called *the category of uber-metric spaces* and denoted **UM**.

Lemma 2.2. The category UM is closed under colimits.

Proof. We must show that **UM** has an initial object, arbitrary coproducts, and coequalizers. The set \emptyset is the initial object in **UM**.

Let A be a set and for all $a \in A$, let (X_a, d_a) denote a metric space. Let X_A denote the set $\coprod_{a \in A} X_a$; and let d_A denote the metric such that for all $y, y' \in X_A$, if there exists $a \in A$ such that $y, y' \in X_a$ then $d_A(y, y') = d_a(y, y')$, but if instead y and y' are in separate components then $d_A(y, y') = \infty$. One checks that (X_A, d_A) is an uber-metric space and that it satisfies the universal property for a coproduct.

Finally, suppose that

$$A \xrightarrow{f} X \xrightarrow{[-]} Y$$

is a coequalizer diagram of sets. Write $x \sim x'$ if there exists $a \in A$ with x = f(a), y = g(a); then $Y = X/\sim$ is the set of equivalence classes. If y = m(x). If d_X is a metric on X, we define a metric ([?]) d_Y on Y by

$$d_Y([x], [x']) = \inf(d_X(p_1, q_1) + d_X(p_2, q_2) + \dots + d_X(p_n, q_n)),$$

where the infemum is taken over all pairs of sequences $(p_1, \ldots, p_n), (q_1, \ldots, q_n)$ of elements of X, such that $p_1 \sim x$, $q_n \sim x'$, and $p_{i+1} \sim q_i$ for all $1 \leq i \leq n-1$. Again, one checks that (Y, d_Y) is an uber-metric space which satisfies the universal property of a coequalizer.

3. Metric realization

In order to define a metric realization functor $Re: \mathbf{sFuz} \to \mathbf{UM}$, we first define it on the representable sheaves in \mathbf{sFuz} and then extend to the whole category using colimits (i.e. using a left Kan extention).

Recall the usual metric on Euclidean space \mathbb{R}^m and let $\mathbb{R}^m_{\geq 0}$ denote the *m*-tuples all of whose entries are non-negative. Recall also that objects of *I* are of the form [0, a) for $0 < a \leq 1$. For an object $([n], [0, a)) \in \mathbb{N} \times I$, define $Re(\Delta^n_{< a})$, as a set, to be

$$\{(x_0, x_1, \dots, x_n) \subset \mathbb{R}^{n+1} | x_0 + x_1 + \dots + x_n = 1 - a\}$$

We take as our metric on $Re(\Delta_{\leq a}^n)$ to be that induced by its inclusion as a subspace of \mathbb{R}^{n+1} .

A morphism $([n], [0, a)) \to ([m], [0, b))$ exists if $a \leq b$, and in that case consists of a morphism $\sigma \colon [n] \to [m]$. We define $Re(\sigma, a \leq b) \colon Re(\Delta^n_{< a}) \to Re(\Delta^m_{< b})$ to be the map

$$(x_0, x_1, \dots, x_n) \mapsto \frac{1-b}{1-a} \left(\sum_{i_0 \in \sigma^{-1}(0)} x_{i_0}, \sum_{i_1 \in \sigma^{-1}(1)} x_{i_1}, \dots, \sum_{i_m \in \sigma^{-1}(m)} x_{i_m} \right).$$

Note that this map is non-expansive because $1 - b \le 1 - a$.

We are ready to define Re on a general X as

$$Re(X):= \operatornamewithlimits{colim}_{\Delta_{$$

This functor preserves colimits, so it has a right adjoint, which we denote $Sing: \mathbf{UM} \to \mathbf{sFuz}$. It is given on $Y \in \mathbf{UM}$ by

$$Sing(Y)_n^{$$

DAVID I. SPIVAK

References

- [Gog] Goguen.
 [Bar] Barr. Fuzzy sets form a topos.
 [Isb] Isbell. Category of metric spaces.
 [Wik] Wikipedia, Metric space, http://en.wikipedia.org/wiki/Metric_space (Quotient metric spaces) (as of Sept. 18, 2009, 17:58 GMT).