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Abstract. We provide some new models for the mapping spaces of a quasi-

category, and a new construction for rigidifying a quasi-category into a simpli-
cial category. These constructions come from the use of necklaces, which are

simplicial sets obtained by stringing simplices together. As an application of

these methods, we use our models to reprove some basic facts from [L] about
the relation between quasi-categories and simplicial categories.
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1. Introduction

Quasi-categories are a certain generalization of categories, in which one has not
only 1-morphisms but n-morphisms for every natural number n. They have been
extensively studied by Joyal [J1], [J2] and by Lurie [L]. If K is a quasi-category
and x and y are two objects of K, then one may associate a “mapping space”
K(x, y) which is a simplicial set. Mapping spaces are important for understanding
quasi-categories; for instance, in Lurie’s approach an equivalence of quasi-categories
is defined to be a functor which is essentially surjective and which induces weak
equivalences on all mapping spaces.

The trouble is that there are many different ways to exhibit mapping spaces, the
different models being weakly equivalent but not isomorphic. No particular model
is ideal for every application, and so one must become versatile at changing back-
and-forth. In [L] several models are used, but there is one particular model denoted
C(K)(x, y) which admits composition maps C(K)(y, z)×C(K)(x, y)→ C(K)(x, z),
giving rise to a simplicial category. The construction C(K) may be thought of as
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a rigidification of the quasi-category K, and it is proven in [L] that the homotopy
theories of quasi-categories and simplicial categories are equivalent via this functor.

In this paper we do two things. The main thing is that we introduce some new
models for the mapping spaces K(x, y), which are particularly easy to describe and
particularly easy to use—in fact they are just nerves of ordinary categories (i.e.,
1-categories). Our models also admit composition maps giving rise to a simplicial
category, and so we are giving a new method for rigidifying quasi-categories. We
prove that our construction is homotopy equivalent (as simplicial categories) to
Lurie’s C(K). The second thing we do is explain how mapping spaces of quasi-
categories fit into the well-understood theory of homotopy function complexes in
model categories [DK3]. The latter technology immediately gives various tools for
understanding why different models for these mapping spaces are weakly equivalent.
By relating the homotopy function complex approach to our models via nerves of
categories, we are able to give new proofs of some results about the rigidification
process.

1.1. Mapping spaces via simplicial categories. Now we describe our results in
more detail. Recall the Joyal model structure on the category sSet: the cofibrations
are the monomorphisms, the weak equivalences are the so-called weak categorical
equivalences (see Section 2.3), and the fibrations are maps with the right lifting
property with respect to acyclic cofibrations. We will denote this model structure by
sSetJ . Quasi-categories are defined to be the fibrant objects of sSetJ , and they have
a particularly nice description: a simplicial set is a quasi-category if it satisfies the
right lifting property with respect to inner horn inclusions Λni → ∆n, 0 < i < n.

There is a functor, constructed in [L], which sends any simplicial set K to a
corresponding simplicial category C(K) ∈ sCat. This is the left adjoint in a Quillen
pair

C : sSetJ � sCat : N,
where N is called the coherent nerve. The functor N can be described quite
explicitly (see Section 2), but the functor C is in comparison a little mysterious.
Each C(K) is defined as a certain colimit in the category sCat, but colimits in sCat
are notoriously difficult to understand.

Our main goal in this paper is to give a different model for the functor C. Define
a necklace (which we picture as “unfastened”) to be a simplicial set of the form

∆n0 ∨∆n1 ∨ · · · ∨∆nk

where each ni ≥ 0 and where in each wedge the final vertex of ∆ni has been glued
to the initial vertex of ∆ni+1 . The simplices ∆ni where ni ≥ 1 are called the beads
of the necklace.

The first and last vertex in any necklace T are denoted αT and ωT , respectively
(or just α and ω if T is obvious from context). If S and T are two necklaces, then by
S ∨ T we mean the necklace obtained in the evident way, by gluing the final vertex
ωS of S to the initial vertex αT of T . Write Nec for the category whose objects
are necklaces and where a morphism is a map of simplicial sets which preserves the
initial and final vertices.

Let S ∈ sSet and let a, b ∈ S0. If T is a necklace, we use the notation

T → Sa,b
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to indicate a morphism of simplicial sets T → S which sends αT to a and ωT to b.
Let (Nec ↓ S)a,b denote the evident category whose objects are pairs [T, T → Sa,b]
where T is a necklace. Note that for a, b, c ∈ S, there is a functor

(Nec ↓ S)b,c × (Nec ↓ S)a,b −→ (Nec ↓ S)a,c
which sends the pair [T2, T2 → Sb,c]× [T1, T1 → Sa,b] to [T1 ∨ T2, T1 ∨ T2 → Sa,c].

Let Cnec(S) be the function which assigns to any a, b ∈ S0 the simplicial set
Cnec(S)(a, b) = N(Nec ↓ S)a,b (the usual nerve of the category (Nec ↓ S)a,b). The
above pairings of categories induces pairings on the nerves, which makes Cnec(S)
into a simplicial category with object set S0.

Theorem 1.2. There is a natural weak equivalence of simplicial categories
Cnec(S) ' C(S), for all simplicial sets S.

In the above result, the weak equivalences for simplicial categories are the so-
called “DK-equivalences” used by Bergner in [B]. See Section 2 for this notion.

In this paper we also give an explicit description of the mapping spaces in the
simplicial category C(S). A rough statement is given below, but see Section 4 for
more details.

Theorem 1.3. Let S be a simplicial set and let a, b ∈ S. Then the mapping space
X = C(S)(a, b) is the simplicial set whose n-simplices are triples subject to a certain
equivalence relations. The triples consist of a necklace T , a map T → Sa,b, and
a flag

−→
T = {T 0 ⊆ · · · ⊆ Tn} of vertices in T . For the equivalence relation, see

Corollary 4.4. The face maps and degeneracy maps are obtained by removing or
repeating elements T i in the flag.
The pairing

C(S)(b, c)× C(S)(a, b) −→ C(S)(a, c)

sends the pair of n-simplices ([T → S;
−→
T i], [U → S,

−→
U i]) to [U ∨ T → S,

−−−−−→
U i ∪ T i].

Theorem 1.2 turns out to be very useful in the study of the functor C. There are
many tools in classical homotopy theory for understanding the homotopy types of
nerves of 1-categories, and via Theorem 1.2 these tools can be applied to understand
mapping spaces in C(S). We demonstrate this technique in Section 6 (and later in
Section 9) by proving, in a new way, some of the basic properties of C found in [L].

1.4. Mapping spaces via model category theory. The above theorems give
two weakly equivalent models for the mapping spaces in a quasi-category. The
perspective of homotopy function complexes, in the sense of Dwyer-Kan, leads to
a collection of different models. In any model category M, given two objects X
and Y there is a homotopy function complex hMapM(X,Y ). This can be defined
in several ways, all giving weakly equivalent models:
(1) It is the mapping space between X and Y in the simplicial localization LWM,

where one inverts the subcategory W of weak equivalences [DK1].
(2) It is the mapping space in the hammock localization LHM constructed by

Dwyer and Kan in [DK2].
(3) It can be obtained as the simplicial set [n] 7→ M(QnX, Ŷ ) where Y → Ŷ is

a fibrant replacement in M and Q•X → X is a cosimplicial resolution of X
[DK3].

(4) It can dually be obtained as the simplicial set [n] 7→M(X̃, RnY ) where X̃ → X
is a cofibrant replacement and Y → R•Y is a simplicial resolution of Y .
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(5) It can be obtained as the nerve of various categories of zig-zags, for instance
the category whose objects are zig-zags

X
∼←− A −→ Y

and where the maps are commutative diagrams equal to the identity on X and
Y .

In some sense the models in (3) and (4) are the most computable, but one finds
that all the models are useful in various situations. One learns, as a part of model
category theory, how to compare these different models and to see that they are
weakly equivalent. See [DK3] and [D1], as well as Section 7 of the present paper.

The above technology can be applied to the Joyal model structure in the following
way. The overcategory (∂∆1 ↓ sSetJ) inherits a model category structure from
sSetJ ([H, 7.6.5]). Given a simplicial set K with chosen vertices a and b, consider
K as a simplicial set under ∂∆1 via the evident map ∂∆1 → K sending 0 7→ a,
1 7→ b. In particular, we can apply this to ∆1 and the vertices 0 and 1. This allows
us to consider the homotopy function complex

hMap(∂∆1↓sSetJ )(∆
1,K),

which somehow feels like the pedagogically ‘correct’ interpretation of the mapping
space in K from a to b. Note, however, that it is “inert” in the sense that there is
no composition law for mapping spaces of this type (see Remark ??).

The following result is more like an observation than a proposition:

Proposition 1.5. Let K be a quasi-category. The mapping spaces HomR
K(a, b) and

HomL
K(a, b) of [L] are models for the above homotopy function complex, obtained

via two different cosimplicial resolutions of ∆1. The pullback

Ka,b //___

���
�
� K∆1

��
∆0

(a,b) // K ×K
is also a model for the same homotopy function complex, this time obtained via a
third cosimplicial resolution, namely the one sending [n] to the pushout

∆1 ×∆n ← ∂∆1 ×∆n → ∂∆1.

Note that, given the above proposition, the Dwyer-Kan technology shows im-
mediately that the three constructions HomR

K(a, b), HomL
K(a, b), and Ka,b are all

weakly equivalent, and in fact gives a ‘homotopically canonical’ weak equivalence
between any two.

1.6. Connections between the two approaches. What is not immediately
clear is how to connect the homotopy function complex

hMap(∂∆1↓sSetJ )(∆
1,K)

to the simplicial sets C(K)(a, b) and Cnec(K)(a, b). This is explained in Section 9,
where they are shown to be connected by a canonical zig-zag of weak equivalences.
At one level the connection can be seen as follows. For any necklace T , there is
a canonical inclusion T ↪→ ∆[T ], where ∆[T ] is the simplex with the same vertex
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set as T ; this inclusion is a weak equivalence in sSetJ . Any map T → K therefore
gives rise to a zig-zag

∆1 −→ ∆[T ] ∼←− T → K

where the map ∆1 → ∆[T ] is the unique 1-simplex connecting the initial and
final vertices. Zig-zags of the above type are known to give a model for homotopy
function complexes.

It should be noted, though, that we were not able to find an argument for the
result following this intuitive outline. Instead, we give a crafty argument using
a variation on Cnec in which one replaces necklaces by a more general class of
“gadgets”. See Section 9 for details.

1.7. Relation with the work of Lurie. In this paper we take as a given the
Joyal model structure on sSet, and from there we develop the properties of mapping
spaces and categorification. In Lurie’s book [L] he takes a different approach, where
he starts by developing the properties of mapping spaces and categorification and
then proves the existence of the Joyal model structure as a consequence of this work.
His methods involve a detailed and lengthy study of what he calls “straightening and
unstraightening” functors, and it was a vague disatisfaction with this material—
together with the hope of avoiding it—that first led us to the work in the present
paper.

Due to the inherent differences in the two approaches, it is slightly awkward for
us to quote results from [L] without creating confusions and possible circularities.
Because of this, there are a few minor results whose proofs we end up repeating
or redoing in a slightly different way. The result is that the present paper can be
read independently of [L]—although this should not be taken as a denial of the
intellectual debt we owe to that work.

1.8. Notation and Terminology. We will sometimes use sSetK to refer to the
usual model structure on simplicial sets, which we’ll term the Kan model struc-
ture. The fibrations are the Kan fibrations, the weak equivalences (called Kan
equivalences from now on) are the maps which induce homotopy equivalences on
geometric realizations, and the cofibrations are the monomorphisms.

We will often be working with the category sSet∗,∗ = (∂∆1 ↓ sSet). When we
consider it as a model category, the model structure is imported from the Joyal
model structure on sSet; in this case we will denote it (sSet∗,∗)J = (∂∆1 ↓ sSetJ).
Note that Nec is a full subcategory of sSet∗,∗.

An object of sSet∗,∗ is a simplicial set X with two distinguished points a and
b. We sometimes (but not always) write Xa,b for X, to remind us that things are
taking place in sSet∗,∗ instead of sSet.

2. Background on quasi-categories

In this section we give the background on quasi-categories and simplicial cate-
gories needed in the rest of the paper.

2.1. Simplicial categories. A simplicial category is a category enriched over sim-
plicial sets; it can also be thought of as a simplicial object of Cat in which the
categories in each level have the same object set. We use sCat to denote the cate-
gory of simplicial categories. A cofibrantly-generated model structure on sCat was
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developed in [B]. A map of simplicial categories F : C → D is a weak equivalence
(sometimes called a DK-equivalence) if
(1) For all a, b ∈ ob C, the map C(a, b) → D(Fa, Fb) is a Kan equivalence of

simplicial sets;
(2) The induced functor of ordinary categories π0F : π0C → π0D is surjective on

isomorphism classes.
Likewise, the map F is a fibration if
(1) For all a, b ∈ ob C, the map C(a, b)→ D(Fa, Fb) is a Kan fibration of simplicial

sets;
(2) For all a ∈ ob C and b ∈ ob D, if e : Fa → b is a map in D which becomes an

isomorphism in π0D, then there is an object b′ ∈ C and a map e′ : a→ b′ such
that F (e′) = e and e′ becomes an isomorphism in π0C.

The cofibrations are the maps which have the left lifting property with respect to
the acyclic fibrations.

Remark 2.2. The second part of the fibration condition seems a little awkward
at first. In this paper we will actually have no need to think about fibrations of
simplicial categories, but have included the definition for completeness.

Bergner writes down sets of generating cofibrations and acyclic cofibrations in
[B].

2.3. Quasi-categories. A quasi-category is defined to be a simplicial set which
has the right lifting property with respect to the inner horn inclusions Λnk ↪→ ∆n

for integers 0 < k < n. It turns out that there is a unique model structure on sSet
with the properties that

(i) The cofibrations are the monomorphisms;
(ii) The fibrant objects are the quasi-categories;

It is easy to see that there is at most one such structure. To do this, let E1 be
the 0-coskeleton—see [AM], for instance—of the set {0, 1} (note that the geometric
realization of E1 is essentially the standard model for S∞). The map E1 → ∗
has the right lifting property with respect to all monomorphisms (see Lemma 8.2),
and so it will be an acyclic fibration in this structure. Therefore X × E1 → X is
also an acyclic fibration for any X, and hence X ×E1 will be a cylinder object for
X. Since every object is cofibrant, a map A → B will be a weak equivalence if
and only if it induces bijections [B,Z] → [A,Z] for every quasicategory Z, where
[A,Z] means the coequalizer of sSet(A×E1, Z) ⇒ sSet(A,Z). Therefore the weak
equivalences are determined by properties (i)–(ii), and since the cofibrations and
weak equivalences are determined so are the fibrations.

The existence of such a stucture is less clear, but was estalished by Joyal (see
[J1] or [J2], or [L] for another proof). For this reason, we will call it the Joyal
model structure and denote it by sSetJ . Joyal [J2] calls the weak equivalences in
this structure weak categorical equivalences, whereas in [L] they are just called cat-
egorical equivalences. In the present paper we will call them Joyal equivalences.

Remark 2.4. Before knowing that there exists such a model structure, let us
consider the above remarks as simply a suggestion of terminology for maps in sSet.
To reiterate, a map A → B inducing bijections [B,Z] → [A,Z] for every quasi-
category Z will be called a Joyal equivalence; a quasi-category will be called a
Joyal fibrant object; a monomorphism will be called a Joyal cofibration.
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In this paper we rarely need to know anything about the Joyal model structure,
other than this this terminology, until Section 6. On occasion we will use the
following facts about the structure that were proven by Joyal:
(1) If K and X are simplicial sets and X is fibrant in sSetJ , then so is XK ([J2,

4.5]). It would be great to prove this ourselves and thus improve this remark.
(2) The inner horn inclusions Λnk ↪→ ∆n (for 0 < k < n) are Joyal equivalences.
(3) sSetJ is left proper.
The second fact is actually an easy consequence of the first, using K = E1 and
Property (ii) above; we leave the reader to puzzle this out. The third property is
true simply because every simplicial set is Joyal cofibrant.

2.5. Background on C and N . Given a simplicial category S, one can construct
a fibrant object in sSetJ called the coherent nerve of S [L, 1.1.5]. We will now
describe this construction.

Recall the adjoint functors F : Grph � Cat : U . Here Cat is the category of
1-categories, and Grph is the category of graphs: a graph consists of an object
set and morphism sets, but no composition law. The functor U is a forgetful
functor, and F is a free functor. Given any category C we may then consider the
comonad resolution (FU)•(C) given by [n] 7→ (FU)n+1(C). This is a simplicial
object in the category Cat of categories, and since all face and degeneracy maps are
isomorphisms on object sets, (FU)•(C) is a category enriched in simplicial sets; i.e.
it is a simplicial category in the usual sense.

There is a functor of simplicial categories (FU)•(C) → C (where the latter is
considered a discrete simplicial category). This functor induces a weak equivalence
on all mapping spaces, a fact which can be seen by applying U , at which point the
comonad resolution picks up a contracting homotopy. Note that this means that
the simplicial mapping spaces in (FU)•(C) are all homotopy discrete.

Recall that [n] denotes the category 0 → 1 → · · · → n, where there is a unique
map from i to j whenever i ≤ j. We let C(∆n) denote the simplicial category
(FU)•([n]). The mapping spaces in this simplicial category can be analyzed com-
pletely, and are as follows. For each i and j, let Pi,j denote the poset of all subsets
of {i, i + 1, . . . , j} containing i and j (ordered by inclusion). Note that the nerve
of Pi,j is isomorphic to the cube (∆1)j−i−1 if j > i, ∆0 if j = i, and the emptyset
if j < i. The nerves of the Pi,j ’s naturally form the mapping spaces of a simplicial
category with object set {0, 1, . . . , n}, using the pairings Pj,k × Pi,j → Pi,k given
by union of sets.

Lemma 2.6. There is an isomorphism of simplicial categories C(∆n) ∼= NP .

Remark 2.7. The proof of the above lemma is a bit of an aside from the main
thrust of the paper, so it is given in Appendix A. In fact we could have defined
C(∆n) to be NP , which is what Lurie does in [L], and avoided the lemma entirely;
the construction (FU)•([n]) will never again be used in this paper. Nevertheless,
the identification of NP with (FU)•([n]) seems informative to us, which is why we
have included it.

For any simplicial category D, the coherent nerve of D is the simplicial set
ND given by

[n] 7→ sCat(C(∆n),D).



8 DANIEL DUGGER AND DAVID SPIVAK

It was proven by Lurie [L] that ND is always a quasi-category; see also Lemma 6.5
below.

The functor N has a left adjoint denoted C : sSet→ sCat. Any simplicial set K
may be written as a colimit of simplices via the formula

K ∼= colim
∆n→K

∆n,

and consequently one has

C(K) ∼= colim
∆n→K

C(∆n)(2.7)

where the colimit takes place in sCat. This formula is a bit unwieldy, however,
in the sense that it does not give much concrete information about the mapping
spaces in C(K). The point of the next three sections is to obtain such concrete
information, via the use of necklaces.

3. Necklaces

A necklace is a simplicial set obtained by stringing simplices together in suc-
cession. In this section we establish some basic facts about them, as well as facts
about the more general category of ordered simplicial sets. When T is a necklace
we are able to give a complete description of the mapping spaces in C(T ) as nerves
of certain posets, generalizing what was said for C(∆n) in the last section. See
Proposition 3.8.

As briefly discussed in the introduction, a necklace is defined to be a simplicial
set of the form

∆n0 ∨∆n1 ∨ · · · ∨∆nk

where each ni ≥ 0 and where in each wedge the final vertex of ∆ni has been glued
to the initial vertex of ∆ni+1 . We say that the necklace is in preferred form if
either k = 0 or each ni ≥ 1.

Let T = ∆n0 ∨∆n1 ∨ · · · ∨∆nk be in preferred form. Each ∆ni is called a bead
of the necklace. A joint of the necklace is either an initial or a final vertex in some
bead. Thus, every necklace has at least one vertex, one bead, and one joint; ∆0 is
not a bead in any necklace except in the necklace ∆0 itself.

Given a necklace T , write VT and JT for the sets of vertices and joints of T . Note
that VT = T0 and JT ⊆ VT . Both VT and JT are totally ordered, by saying a ≤ b
if there is a directed path in T from a to b. The initial and final vertices of T are
denoted αT and ωT (and we sometimes drop the subscript); note that αT , ωT ∈ JT .

Every necklace T comes with a particular map ∂∆1 → T which sends 0 to the
initial vertex of the necklace, and 1 to the final vertex. If S and T are two necklaces,
then by S ∨ T we mean the necklace obtained in the evident way, by gluing the
final vertex of S to the initial vertex of T . Let Nec denote the full subcategory of
sSet∗,∗ = (∂∆1 ↓ sSet) whose objects are necklaces ∂∆1 → T . We sometimes talk
about Nec as though it is a subcategory of sSet.

A simplex is a necklace with one bead. A spine is a necklace in which every
bead is a ∆1. Every necklace T has an associated simplex and spine, which we
now define. Let ∆[T ] be the simplex whose vertex set is the same as the (ordered)
vertex set of T . Likewise, let Spi[T ] be the longest subnecklace of T that is a spine.
Note that there are inclusions Spi[T ] ↪→ T ↪→ ∆[T ]. The assignment T → ∆[T ] is a
functor, but T → Spi[T ] is not (for instance, the unique map of necklaces ∆1 → ∆2

does not induce a map on spines).
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Lemma 3.1. For any necklace T , the maps Spi[T ] ↪→ T ↪→ ∆[T ] are both weak
equivalences in sSetJ .

Proof. It is easy to see that the map ∆n ∨∆1 → ∆n+1 is a composite of
∑n
i=1

(
n
i

)
cobase changes along inner horn inclusions

Λ{a1,...,ai,n,n+1}
n −→ ∆i+1,

where 0 ≤ a1 < · · · < ai < n. Consequently it is a Joyal equivalence. By induction,
it follows that Spi[T ] → ∆[T ] is a Joyal equivalence. That Spi[T ] → T is a Joyal
equivalence is proven, bead by bead, using cobase changes of the form Spi(B)→ B.
The result follows by two-out-of-three.

�

3.2. Ordered simplicial sets. If T → T ′ is a map of necklaces, then the image
of T is also a necklace. To prove this, as well as for several other reasons scattered
thoughout the paper, it turns out to be very convenient to work in somewhat greater
generality.

If X is a simplicial set, define a relation on its 0-simplices by saying that x � y
if there exists a spine T and a map T → X sending α 7→ x and ω 7→ y. In other
words, x � y if there is a directed path from x to y inside of X. Note that this
relation is clearly reflexive and transitive, but not necessarily antisymmetric: that
is, if x � y and y � x it need not be true that x = y.

Definition 3.3. A simplicial set X is ordered if
(i) The relation � defined on X0 is antisymmetric, and

(ii) An simplex x ∈ Xn is determined by its sequence of vertices x(0) � · · · � x(n);
i.e. no two distinct n-simplices have identical vertex sequences.

Note the role of degenerate simplices in condition (ii). For example, notice that
∆1/∂∆1 is not an ordered simplicial set.

The following notion is also useful:

Definition 3.4. Let A and X be simplicial sets. A map A→ X is called a simple
inclusion if it has the right lifting property with respect to the canonical inclusions
∂∆1 ↪→ T for all necklaces T . (Note that such a map really is an inclusion, because
it has the lifting property for ∂∆1 → ∆0).

The notion of simple inclusion says that if there is a “path” (in the sense of a
necklace) in X that starts and ends in A, then it must lie entirely in A. As an
example, four out of the five inclusions ∆1 ↪→ ∆1 ×∆1 are simple inclusions.

Lemma 3.5. A simple inclusion A ↪→ X has the right lifting property with respect
to the maps ∂∆k ↪→ ∆k for all k ≥ 1.

Proof. Suppose given a square

∂∆k //

��

A

��
∆k // X.

By restricting the map ∂∆k → A to ∂∆1 ↪→ ∂∆k (given by the initial and final
vertices of ∂∆k), we get a corresponding lifting square with ∂∆1 ↪→ ∆k. Since
A → X is a simple inclusion, this new square has a lift l : ∆k → A. It is not
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immediately clear that l restricted to ∂∆k equals our original map, but the two
maps are equal after composing with A → X; since A → X is a monomorphism,
the two maps are themselves equal. �

Lemma 3.6. Let X and Y denote ordered simplicial sets and let f : X → Y be a
map.

(1) The category of ordered simplicial sets is closed under taking finite limits.
(2) Every necklace is an ordered simplicial set.
(3) If X ′ ⊆ X is a simplicial subset, then X ′ is also ordered.
(4) The map f is completely determined by the map f0 : X0 → Y0 on vertices.
(5) If f0 is injective then so is f .
(6) The image of an n-simplex x : ∆n → X is of the form ∆k ↪→ X for some

k ≤ n.
(7) If T is a necklace and y : T → X is a map, then its image is a necklace.
(8) Suppose that X ← A→ Y is a diagram of ordered simplicial sets, and both

A→ X and A→ Y are simple inclusions. Then the pushout B = X qA Y
is an ordered simplicial set, and the inclusions X ↪→ B and Y ↪→ B are
both simple.

Proof. For (1), the terminal object is a point with its unique ordering. Given a
diagram of the form

X −→ Z ←− Y,
let A = X×Z Y . It is clear that if (x, y) �A (x′, y′) then both x �X x′ and y �Y y′

hold, and so antisymmetry of �A follows from that of �X and �Y . Condition (ii)
from Definition 3.3 is easy to check.

Parts (2)–(5) are easy, and left to the reader.
For (6), the sequence x(0), . . . , x(n) ∈ X0 may have duplicates; let d : ∆k → ∆n

denote any face such that x ◦ d contains all vertices x(j) and has no duplicates.
Note that x ◦ d is an injection by (5). A degeneracy of x ◦ d has the same vertices
as does x. Since X is ordered, x is a degeneracy of x ◦ d. Hence, x ◦ d : ∆k ↪→ X is
the image of x.

Claim (7) follows from claims (2) and (6).
For claim (8) we first show that the maps X ↪→ B and Y ↪→ B are simple

inclusions. To see this, suppose that u, v ∈ X are vertices, T is a necklace, and
f : T → Bu,v is a map; we want to show that f factors through X. Note that any
simplex ∆k → B either factors through X or through Y . Suppose that the set of
beads of T which factor through Y is non-empty (if it is empty, we are done). Take
from it any maximal subset in which the beads are adjacent. We are left with a
necklace T ′ ⊆ T such that f(T ′) ⊆ Y and f(αT ′), f(ωT ′) ∈ X. Since αT ′ , ωT ′ are
also in Y , they are in A, so the lifting property implies that f(T ′) ⊆ A ⊆ X. Hence
f factors through X.

We have shown that X ↪→ B (and dually Y ↪→ B) is a simple inclusion. Now we
show that B is ordered, so suppose u, v ∈ B are such that u � v and v � u. There
there are spines T and U and maps T → Bu,v, U → Bv,u. Consider the composite
spine T ∨ U → Bu,u. If u ∈ X, then since X ↪→ B is a simple inclusion it follows
that the image of T ∨U maps entirely into X; so u �X v and v �X u, which means
u = v because X is ordered. The same argument works if u ∈ Y , so this verifies
antisymmetry of �B .
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To verify condition (ii) of Definition 3.3, suppose p, q : ∆k → B are k-simplices
with the same sequence of vertices; we wish to show p = q. We know that p factors
through X or Y , and so does q; if both factor through Y , then the fact that Y is
ordered implies that p = q (similarly for X). So we may assume p factors through
X and q factors through Y . By induction on k, the restrictions p|∂∆k = q|∂∆k are
equal, hence factor through A. By Lemma 3.5 applied to A ↪→ X, the map p factors
through A. Therefore it also factors through Y , and now we are done because q
also factors through Y and Y is ordered. �

3.7. Categorification of necklaces. Let T be a necklace. Our next goal is to
give a complete description of the simplicial category C(T ). The object set of this
category is precisely T0.

For vertices a, b ∈ T0, let VT (a, b) denote the set of vertices in T between a and
b, inclusive (with respect to the relation �). Let JT (a, b) denote the union of {a, b}
with the set of joints between a and b. There is a unique subnecklace of T with
joints JT (a, b) and vertices VT (a, b); let B̃0, B̃1, . . . B̃` denote its beads. There are
canonical inclusions of each B̃i to T . Hence, there is a natural map

C(B̃k)(jk, b)× C(B̃k−1)(jk−1, jk)× · · · × C(B̃1)(j1, j2)× C(B̃0)(a, j1)→ C(T )(a, b)

obtained by first including the B̃i’s into T and then using the composition in C(T ).
We will see that this map is an isomorphism. Note that each of the sets C(B̃i)(−,−)
has an easy description, as in Lemma 2.6); from this one may extrapolate a corre-
sponding description for C(T )(−,−), to be explained next.

Let CT (a, b) denote the poset whose elements are subsets of VT (a, b) which con-
tain JT (a, b), ordered by inclusion. There is a pairing of categories

CT (b, c)× CT (a, b)→ CT (a, c)

given by union of subsets.
Applying the nerve functor, we obtain a simplicial category NCT with object

set T0. For a, b ∈ T0, an n-simplex in NCT (a, b) can be seen as a flag of sets
−→
T = T 0 ⊆ T 1 ⊆ · · · ⊆ Tn, where JT ⊆ T 0 and Tn ⊆ VT .

Proposition 3.8. Let T be a necklace. There is a natural isomorphism of simplicial
categories between C(T ) and NCT .

Proof. Write T = B1 ∨B2 ∨ · · · ∨Bk, where the Bi’s are the beads of T . Then

C(T ) = C(B1)qC(∗) C(B2)qC(∗) · · · qC(∗) C(Bk)

since C preserves colimits. Note that C(∗) = C(∆0) = ∗, the category with one
object and a single morphism (the identity).

Note that we have isomorphisms C(Bi) ∼= NCBi
by Lemma 2.6. We therefore

get maps of categories C(Bi) → NCBi
→ NCT , and it is readily checked these

extend to a map f : C(T ) → NCT . To see that this functor is an isomorphism, it
suffices to show that it is fully faithful (as it is clearly a bijection on objects).

For any a, b ∈ T0 we will construct an inverse to the map f : C(T )(a, b) →
NCT (a, b), when b > a (the case b ≤ a being obvious). Let Br and Bs be the
beads containing a and b, respectively (if a (resp. b) is a joint, let Br (resp. Bs) be
the latter (resp. former) of the two beads which contain it). Let jr, jr+1 . . . , js+1

denote the elements of JT (a, b), indexed so that ji and ji+1 lie in the bead Bi; note
that jr = a and js+1 = b.
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Any simplex x ∈ NCT (a, b)n can be uniquely written as the composite of n-
simplices xs ◦ · · · ◦ xr, where xi ∈ NCT (ji, ji+1)n. Now ji and ji+1 are vertices
within the same bead Bi of T , therefore xi may be regarded as an n-simplex in
C(Bi)(ji, ji+1). We then get associated n-simplices in C(T )(ji, ji+1), and taking
their composite gives an n-simplex x̃ ∈ C(T )(a, b). We define a map g : NCT (a, b)→
C(T )(a, b) by sending x to x̃. One readily checks that this is well-defined and
compatible with the simplicial operators, and it is also clear that f ◦ g = id.

To see that f is an isomorphism it suffices to now show that g is surjective. But
upon pondering colimits of categories, it is clear that every map in C(T )(a, b) can
be written as a composite of maps from the C(Bi)’s. It follows at once that g is
surjective. �

Corollary 3.9. Let T = B0 ∨ B1 ∨ · · · ∨ Bk be a necklace. Let a, b ∈ T0 be such
that a < b. Let jr, jr+1, . . . , js+1 be the elements of JT (a, b) (in order), and let Bi
denote the bead containing ji and ji+1, for r ≤ i ≤ s. Then the map

C(Bs)(js, js+1)× · · · × C(Br)(jr, jr+1)→ C(T )(a, b)

is an isomorphism. Therefore C(T )(a, b) ∼= (∆1)N where N = |VT (a, b)− JT (a, b)|.
In particular, C(T )(a, b) is contractible if a ≤ b and empty otherwise.

Proof. Follows at once from the previous lemma. �

Remark 3.10. Given a necklace T , there is a heuristic way to understand faces
(both codimension one and higher) in the cubes C(T )(a, b) in terms of “paths” from
a to b in T . To choose a face in C(T )(a, b), one chooses three subsets Y,N,M ⊂
VT (a, b) which cover the set VT (a, b) and are mutually disjoint. The set Y is the
set of vertices which we require our path to go through – it must contain JT (a, b);
the set N is the set of vertices which we require our path to not go through; and
the set M is the set of vertices for which we leave the question open. Such choices
determine a unique face in C(T )(a, b). The dimension of this face is precisely the
number of vertices in M .

4. The categorification functor

By this point, we fully understand C(∆n) as a simplicial category. Recall that
C : sSet→ sCat is defined for S ∈ sSet by the formula

C(S) = colim
∆n→S

C(∆n).

The trouble with this formula is that given a diagram X : I → sCat of simplicial
categories, it is generally quite difficult to understand the mapping spaces in the
colimit. In our case, however, something special happens because the simplicial
categories C(∆n) are “directed” in a certain sense. It turns out by making use of
necklaces one can write down a precise description of the mapping spaces for C(S);
this is the goal of the present section.

Fix a simplicial set S and elements a, b ∈ S0. For any necklace T and map
T → Sa,b, there is an induced map C(T )(α, ω) → C(S)(a, b). Let (Nec ↓ S)a,b
denote the category whose objects are pairs [T, T → Sa,b] and whose morphisms
are maps of necklaces T → T ′ giving commutative triangles over S. Then we obtain
a map

colim
T→S∈(Nec↓S)a,b

[
C(T )(α, ω)

]
−→ C(S)(a, b).(4.1)
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Let us write ES(a, b) for the domain of this map. Note that there are composition
maps

ES(b, c)× ES(a, b) −→ ES(a, c)(4.2)

induced in the following way. Given T → Sa,b and U → Sb,c where T and U are
necklaces, one obtains T ∨ U → Sa,c in the evident manner. The composite

C(U)(αU , ωU )× C(T )(αT , ωT ) // C(T ∨ U)(ωT , ωU )× C(T ∨ U)(αT , ωT )

µ

��
C(T ∨ U)(αT , ωU )

induces the pairing of (4.2). One readily checks that ES is a simplicial category
with object set S0, and (4.1) yields a map of simplicial categories ES → C(S).
Moreover, the construction ES is clearly functorial in S.

Here is our first result:

Proposition 4.3. For every simplicial set S, the map ES → C(S) is an isomor-
phism of simplicial categories.

Proof. First note that if S is itself a necklace then the identity map S → S is a
terminal object in (Nec ↓ S)a,b. It follows at once that ES(a, b)→ C(S)(a, b) is an
isomorphism for all a and b.

Now let S be an arbitrary simplicial set, and choose vertices a, b ∈ S0. We will
show that ES(a, b)→ C(S)(a, b) is a bijection. Consider the commutative diagram
of simplicial sets (

colim∆k→S E∆k

)
(a, b) t //

∼=
��

ES(a, b)

��(
colim∆k→S C(∆k)

)
(a, b) C(S)(a, b).

The bottom equality is the definition of C. The left-hand map is an isomorphism
by our remarks in the first paragraph. It follows that the top map t is injective. To
complete the proof it therefore suffices to show that t is surjective.

Choose an n-simplex x ∈ ES(a, b)n; it is represented by a necklace T , a map
f : T → Sa,b, and an element x̃ ∈ C(T )(α, ω). We have a commutative diagram(

colim∆k→T C(∆k)
)

(α, ω) // C(T )(α, ω)

(colim∆k→T E∆k) (α, ω) //

OO

f

��

ET (α, ω)

OO

Ef

��
(colim∆k→S E∆k) (a, b) t // ES(a, b).

The n-simplex in ET (α, ω) represented by [T, idT : T → T ; x̃] is sent to x under Ef .
It suffices to show that the middle horizontal map is surjective, for then x will be
in the image of t. But the top map is an isomorphism, and the vertical arrows in
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the top row are isomorphisms by the remarks from the first paragraph. Thus, we
are done. �

Corollary 4.4. For any simplicial set S and elements a, b ∈ S0, the simplicial set
C(S)(a, b) admits the following description. An n-simplex in C(S)(a, b) consists of
an equivalence class of triples [T, T → S,

−→
T ], where

• T is a necklace;
• T → S is a map of simplicial sets which sends αT to a and ωT to b; and
•
−→
T is a flag of sets T 0 ⊆ T 1 ⊆ · · · ⊆ Tn such that T 0 contains the joints of
T and Tn is contained in the set of vertices of T .

The equivalence relation is generated by considering (T → S;
−→
T ) and (U → S;

−→
U ) to

be equivalent if there exists a map of necklaces f : T → U over S with
−→
U = f∗(

−→
T ).

The ith face (resp. degeneracy) map omits (resp. repeats) the set T i in the flag.
That is, if x = (T → S;T 0 ⊆ · · · ⊆ Tn) represents an n-simplex of C(S)(a, b) and
0 ≤ i ≤ n, then

si(x) = (T → S;T 0 ⊆ · · · ⊆ T i ⊆ T i ⊆ · · · ⊆ Tn)

and
di(x) = (T → S;T 0 ⊆ · · · ⊆ T i−1 ⊆ T i+1 ⊆ · · · ⊆ Tn).

Proof. This is a straightforward interpretation of the colimit appearing in the def-
inition of ES from (4.1). Recall that every colimit can be written as a coequalizer

colim
T→S∈(Nec↓S)a,b

[
C(T )(α, ω)

]
∼= coeq

[ ∐
T1→T2→S

C(T1)(α, ω) ⇒
∐
T→S

C(T )(α, ω)
]
,

and that elements of C(T ) are identified with flags of subsets of VT , containing JT ,
by Lemma 3.8. �

Our next goal is to simplify the equivalence relation appearing in Corollary 4.4
somewhat. To this end, let us introduce some terminology. A flagged necklace
is a pair [T,

−→
T ] where T is a necklace and

−→
T is a flag of subsets of VT which all

contain JT . The length of the flag is the number of subset symbols, or one less
than the number of subsets. A morphism of flagged necklaces [T,

−→
T ] → [U,

−→
U ]

exists only if the flags have the same length, in which case it is a map of necklaces
f : T → U such that f(T i) = U i for all i. Finally, a flag

−→
T = (T 0 ⊆ · · · ⊆ Tn) is

called flanked if T 0 = JT and Tn = VT . Note that if [T,
−→
T ] and [U,

−→
U ] are both

flanked, then every morphism [T,
−→
T ]→ [U,

−→
U ] is surjective (because its image will

be a subnecklace of U having the same joints and vertices as U , hence it must be
all of U).

Lemma 4.5. Under the equivalence relation of Corollary 4.4, each of the triples
[T, T → S,

−→
T ] is equivalent to one in which the flag is flanked. Moreover, two

flanked triples are equivalent (in the sense of Corollary 4.4) if and only if they can
be connected by a zig-zag of morphisms of flagged necklaces in which every triple of
the zig-zag is flanked.

Proof. Suppose given a flagged necklace [T, T 0 ⊆ · · · ⊆ Tn]. There is a unique
subnecklace T ′ ↪→ T whose set of joints is T 0 and whose vertex set is Tn. Then the
pair (T ′, T 0 ⊆ · · · ⊆ Tn) is flanked. This assignment, which we call flankification, is
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actually functorial: a morphism of flagged necklaces f : [T,
−→
T ]→ [U,

−→
U ] must map

T ′ into U ′ and therefore gives a morphism [T ′,
−→
T ]→ [U ′,

−→
U ].

Using the equivalence relation of Corollary 4.4, each triple [T, T → S,
−→
T ] will be

equivalent to the flanked triple [T ′, T ′ → T → S,
−→
T ] via the map T ′ → T . If the

flanked triple [U,U → S,
−→
U ] is equivalent to the flanked triple [V, V → S,

−→
V ] then

there is a zig-zag of maps between triples which starts at the first and ends at the
second, by Corollary 4.4. Applying the flankification functor gives a corresponding
zig-zag in which every object is flanked. �

Remark 4.6. By the previous lemma, we can alter our model for C(S)(a, b) so
that the n-simplices are equivalence classes of triples [T, T → S,

−→
T ] in which the

flag is flanked, and the equivalence relation is given by maps (which are necessarily
surjections) of flanked triples. Under this model the degeneracies and inner faces
are given by the same description as before: repeating or omitting one of the subsets
in the flag. The outer faces d0 and dn are now more complicated, however, because
omitting the first or last subset in the flag may produce one which is no longer
flanked; one must first remove the subset and then apply the flankification functor
from Lemma 4.5. This model for C(S)(a, b) was originally shown to us by Jacob
Lurie; it will play only a very minor role in what follows.

Our next task will be to analyze surjections of flagged triples. Let T be a
necklace and S a simplicial set. Say that a map T → S is totally nondegenerate
if the image of each bead of T is a nondegenerate simplex of S. Note a totally
nondegenerate map need not be an injection: for example, let S = ∆1/∂∆1 and
consider the nondegenerate 1-simplex ∆1 → S.

Recall that in a simplicial set S, if z ∈ S is a degenerate simplex then
there is a unique nondegenerate simplex z′ and a unique degeneracy operator
sσ = si1si2 · · · sik such that z = sσ(z′); see [H, Lemma 15.8.4]. Using this, and
the fact that degeneracy operators correspond to surjections of simplices, one finds
that for any map T → S there is a necklace T , a map T → S which is totally
nondegenerate, and a surjection of necklaces T → T making the evident triangle
commute; moreover, these three things are unique up to isomorphism.

Proposition 4.7. Let S be a simplicial set and let a, b ∈ S0.

(a) Suppose that T and U are necklaces, U u−→ S and T
t−→ S are two maps, and

that t is totally nondegenerate. Then there is at most one surjection U
f // //T

such that u = t ◦ f .
(b) Suppose that one has a diagram

U

g
����

f // // T

��
V // S

where T , U , and V are flagged necklaces, T → S is totally nondegenerate, and
f and g are surjections. Then there exists a unique map of flagged necklaces
V → T making the diagram commute.

Proof. We first make the observation that if A→ B is a surjection of necklaces and
B 6= ∗ then every bead of B is surjected on by a unique bead of A. Also, each bead
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of A is either collapsed onto a joint of B or else mapped surjectively onto a bead
of B.

For (a), note that we may assume T 6= ∗ (or else the claim is trivial). The
necklace U can be written as the wedge of beads, some of which are sent to a point
in S, call them bad, and some of which are not, call them good. We now use the
above observation. For any surjection f : U → T , each bad bead of U must be sent
to a joint in T and each good bead of U must surject onto a unique bead of T ,
because T → S is totally non-degenerate.

This is almost enough to show that there is at most one surjection U → T over
S; all that is left is to show that for each good bead B of U , there is at most one
possible surjection to the corresponding bead C of T (over S). The image of B in
S is a degeneracy of the image of C in S; since the latter is non-degenerate, the
result follows by the uniqueness of degeneracies.

Next we turn to part (b). Note that the map V → T will necessarily be surjective,
so the uniqueness part is guaranteed by (a); we need only show existence.

Observe that if B is a bead in U which maps to a point in V then it maps to
a point in T , by the reasoning above. It now follows that there exists a necklace
U ′, obtained by collapsing every bead of U that maps to a point in V , and a
commutative diagram

U
f // //

    AAAAA

g

����

T

��

U ′

f ′
>> >>}}}}}

g′

~~~~}}}}}

V // S

Replacing U, f, and g by U ′, f ′, and g′, and dropping the primes, we can now assume
that g induces a one-to-one correspondence between beads of U and beads of V .
Let B1, . . . , Bm denote the beads of U , and let C1, . . . , Cm denote the beads of V .

Since f : U → T is surjective, the image Di of each bead Bi in U is sent either
to a bead or a point in T . Hence we have T = D1 ∨D2 ∨ · · · ∨Dm. A surjective
map of necklaces V → T is determined by a surjective map Ci → Di for each i.

For each bead Ci = ∆ci in V , its image z ∈ S is a degeneracy of a unique non-
degenerate simplex z′ ∈ S by [H, Lemma 15.8.4]. In other words, there is a unique
non-degenerate simplex ∆ji → S and commutative diagram

∆ci
! // //

Ci

��

z

""EEEEEEEE ∆ji

!

��
V // S

It follows that Di = ∆ji , and we define the map V → T so that it sends Ci to Di

in the specified way.
Any map V → T induces a map from the vertices of V to the vertices of T , and

one can check that our map will send joints of V to joints of T . Hence, it sends
flags to flags, completing the proof.

�
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Corollary 4.8. Let S be a simplicial set and a, b ∈ S0. Under the equivalence
relation from Corollary 4.4, every triple [T, T → Sa,b,

−→
T ] is equivalent to a unique

triple [U,U → Sa,b,
−→
U ] which is both flanked and totally nondegenerate.

Proof. Let t = [T, T → Sa,b,
−→
T ]. Then t is clearly equivalent to at least one flanked,

totally nondegenerate triple because we can replace t with [T ′, T ′ → Sa,b,
−→
T ] (flanki-

fication) and then with [T ′, T ′ → Sa,b,
−→
T ′] (defined above Proposition 4.7).

Now suppose that [U,U → Sa,b,
−→
U ] and [V, V → Sa,b,

−→
V ] are both flanked,

totally nondegenerate, and equivalent in C(S)(a, b)n. Then by Lemma 4.5 there is
a zig-zag of maps between flanked necklaces (over S) connecting U to V :

W1

||||zzzzzzzz

�� ��<<<<<<< W2

�����������

�� ��<<<<<<< · · ·

�����������

�� ��;;;;;;; Wk

�����������

## ##HHHHHHHH

U = U1 U2 U3 · · · Uk Uk+1 = V

Using Proposition 4.7, we inductively construct surjections of flanked necklaces
Ui → U over S. This produces a surjection V → U over S. Similarly, we obtain
a surjection U → V over S. By Proposition 4.7(a) these maps must be inverses of
each other; that is, they are isomorphisms. �

Remark 4.9. Again, as in Remark 4.6 the above corollary shows that we can
describe C(S)(a, b) as the simplicial set whose n-simplices are triples [T, T → S,

−→
T ]

which are both flanked and totally nondegenerate. The degeneracies and inner faces
are again easy to describe—they are repetition or omission of a set in the flag—but
for the outer faces one must first omit a set and then apply flankification. This is
just one description among many (see Remark ??) and is more useful for thinking
about examples than it is for proving results, because of these complications with
the outer faces.

The following result is the culmination of our work in this section, and will turn
out to be a key step in the proof of our main theorems. Fix a simplicial set S and
vertices a, b ∈ S0, and let Fn denote the category of flagged triples over Sa,b that
have length n. That is, the objects of Fn are triples [T, T → Sa,b, T

0 ⊆ · · · ⊆ Tn]
and morphisms are maps of necklaces f : T → T ′ over S such that f(T i) = (T ′)i

for all i.

Proposition 4.10. For each n ≥ 0, the nerve of Fn is homotopy discrete in sSetK .

Proof. Recall from Lemma 4.5 that there is a functor φ : Fn → Fn which sends
any triple to its ‘flankification’. There is a natural transformation from φ to the
identity, and the image of φ is the subcategory F ′n ⊆ Fn of flanked triples. It will
therefore suffice to prove that (the nerve of) F ′n is homotopy discrete.

Recall from Corollary 4.8 that every component of F ′n contains a unique triple
t which is both flanked and totally nondegenerate. Moreover, every triple in the
same component as t admits a unique map to t—that is to say, t is a final object for
its component. Therefore its component is contractible. This completes the proof.

�
4.11. The functor C applied to ordered simplicial sets.

Note that even if a simplicial set S is small—say, in the sense that it has finitely
many nondegenerate simplices—the space C(S)(a, b) may be quite large. This is due
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to the fact that there are infinitely many necklaces mapping to S (if S is nonempty).
For certain simplicial sets S, however, it is possible to restrict to necklaces which lie
inside of S; this cuts down the possibilities. The following results and subsequent
example demonstrate this. Recall the definition (3.3) of ordered simplicial sets.

Lemma 4.12. Let D be an ordered simplicial set and let a, b ∈ D0. Then every
n-simplex in C(D)(a, b) is represented by a unique triple [T, T → D,

−→
T ] in which T

is a necklace,
−→
T is a flanked flag of length n, and the map T → D is injective.

Proof. By Corollary 4.8, every n-simplex in C(D)(a, b) is represented by a unique
triple [T, T → D,

−→
T ] which is both flanked and totally non-degenerate. It suffices to

show that if D is ordered, then any totally non-degenerate map T → D is injective.
This follows from Lemma 3.6. �

Corollary 4.13. Let D be an ordered simplicial set, and a, b ∈ D0. Let MD(a, b)

denote the simplicial set for which MD(a, b)n is the set of triples [T, T
f−→ Da,b,

−→
T ],

where f is injective and
−→
T is a flanked flag of length n; face and boundary maps

are as in Remark 4.6. Then there is a natural isomorphism

C(D)(a, b)
∼=−→MD(a, b).

Proof. This follows immediately from Lemma 4.12.
�

Example 4.14. Consider the simplicial set S = ∆2 q∆1 ∆2 depicted

1 3

0 2

• •

• •

-? ?

-

�
���

We will describe the mapping space X = C(S)(0, 3) by giving its non-degenerate
simplices and face maps.

By Lemma 4.12, it suffices to consider flanked necklaces that inject into S. There
are only five such necklaces that have endpoints 0 and 3. These are T = ∆1 ∨∆1,
which maps to S in two different ways f, g; and U = ∆1 ∨∆1 ∨∆1, V = ∆1 ∨∆2,
and W = ∆2∨∆1, each of which maps uniquely into S0,3. The image of T0 under f
is {0, 1, 3} and under g is {0, 2, 3}. The images of U0, V0, and W0 are all {0, 1, 2, 3}.

We find that X0 consists of three elements [T ; {0, 1, 3}], [T ; {0, 2, 3}] and
[U ; {0, 1, 2, 3}]. There are two nondegenerate 1-simplices, [V ; {0, 1, 3} ⊂ {0, 1, 2, 3}]
and [W ; {0, 2, 3} ⊂ {0, 1, 2, 3}]. These connect the three 0-simplices in the obvious
way, resulting in two one simplices with a common final vertex. There are no higher
non-degenerate simplices. Thus C(S)(0, 3) looks like

• • //oo • .

5. Homotopical models for categorification

In the last section we gave a very explicit description of the mapping spaces
C(S)(a, b), for arbitrary simplicial sets S and a, b ∈ S0. While this description
was explicit, in some ways it is not very useful from a homotopical standpoint—in
practice it is hard to use this description to identify the homotopy type of C(S)(a, b).

In this section we will discuss a functor Cnec : sSetJ → sCat that has a simpler
description than C and which is more homotopical. We prove that for any simplicial
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set S there is a natural zigzag of weak equivalences between C(S) and Cnec(S).
Variants of this construction are also introduced, leading to a collection of functors
sSet→ sCat all of which are weakly equivalent to C.

Let S be a simplicial set. A choice of a, b ∈ S0 will be regarded as a map ∂∆1 →
S. Let (Nec ↓ S)a,b be the overcategory for the inclusion functor Nec ↪→ (∂∆1 ↓ S).
Finally, define

Cnec(S)(a, b) = N(Nec ↓ S)a,b.
This is a simplicial category in an evident way.

Remark 5.1. Both the functor C and the functor Cnec have distinct advantages
and disadvantages. The main advantage to C is that it is left adjoint to the coherent
nerve functor N (in fact it is a left Quillen functor); as such, it preserves colimits.
However, as mentioned above, the functor C can be difficult to use in practice
because the mapping spaces have an awkward description.

It is at this point that our functor Cnec becomes useful, because the mapping
spaces are given as nerves of 1-categories. Many tools are available for determining
when a morphism between nerves is a Kan equivalence. These tools are thus directly
employable for determining weak equivalences in the Joyal model structure. We
will give an example of this in Section 9 where we show that the unit map for the
adjunction (C, N) is a weak equivalence in the Joyal model structure.

Our main theorem is that there is a simple zigzag of weak equivalences between
C(S) and Cnec(S); that is, there is a functor Choc : sSet → sCat and natural weak
equivalences C← Choc → Cnec. We begin by describing the functor Choc.

Fix a simplicial set S. Define Choc(S) to have object set S0, and for every
a, b ∈ S0

Choc(S)(a, b) = hocolim
T∈(Nec↓S)a,b

C(T )(α, ω).

Note the similarities to Theorem 5.2, where it was shown that C(S)(a, b) has a
similar description in which the hocolim is replaced by the colim. In our definition
of Choc(S)(a, b) we mean to use a particular model for the homotopy colimit, namely
the diagonal of the bisimplicial set whose (k, l)-simplices are pairs

(F : [k]→ (Nec ↓ S)a,b;x ∈ C(F (0))(α, ω)l),

where F (0) denotes the necklace obtained by applying F to 0 ∈ [k] and then
applying the forgetful functor (Nec ↓ S)a,b → Nec. The composition law for Choc

is defined as in Lemma 3.8.
We proceed to establish natural transformations Choc → Cnec and Choc → C.

Note that Cnec(S)(a, b) is the homotopy colimit of the constant functor {∗} : (Nec ↓
S)a,b → sSet which sends everything to a point. The maps C(T )(α, ω) → ∗
(where T = F (0)) induce our map Choc(S)(a, b) → Cnec(S)(a, b). Since the spaces
C(T )(α, ω) are all contractible simplicial sets (see Corollary 3.9), the induced map
Choc(S)(a, b)→ Cnec(S)(a, b) is a Kan equivalence. We thus obtain a natural weak
equivalence of simplicial categories Choc(S)→ Cnec(S).

For any diagram in a model category there is a canonical natural transforma-
tion from the homotopy colimit to the colimit of that diagram. Hence there is a
morphism

Choc(S)(a, b)→ colim
T∈(Nec↓S)a,b

C(T )(α, ω) ∼= C(S)(a, b).
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(For the isomorphism we are using Proposition 4.3.) As this is natural in a, b ∈ S0

and natural in S, we have a natural transformation Choc → C.

Theorem 5.2. For every simplicial set S, the maps C(S) ← Choc(S) → Cnec(S)
defined above are weak equivalences of simplicial categories.

Proof. We have already established that the natural transformation Choc → Cnec

is an objectwise equivalence, so it suffices to show that for each simplicial set S
and objects a, b ∈ S0 the natural map Choc(S)(a, b) → C(S)(a, b) is also a Kan
equivalence.

Recall that Choc(S)(a, b) is the diagonal of a bisimplicial set whose lth ‘horizontal’
row is the nerve NFl of the category of flagged necklaces mapping to S, where the
flags have length l. Also recall from Corollary 4.4 that C(S)(a, b) is the simplicial
set which in level l is π0(NFl). But Proposition 4.10 says that NFl → π0(NFl) is
a Kan equivalence, for every l. It follows that Choc(S)(a, b) → C(S)(a, b) is also a
Kan equivalence. �

5.3. Other models for categorification. One can imagine variations of our basic
construction in which one replaces necklaces with other convenient simplicial sets—
which we might term “gadgets”, for lack of a better word. We will see in Section 6,
for instance, that using products of necklaces leads to a nice theorem about the
categorification of a product. Later, in Section 9, several key arguments will hinge
on a clever choice of what gadgets to use. In the material below we give some basic
requirements of the “gadgets” which will ensure they give a model equivalent to
that of necklaces.

Suppose P is a subcategory of sSet∗,∗ = (∂∆1 ↓ sSet) containing the terminal
object. For any simplicial set S and vertices a, b ∈ S0, let (P ↓ S)a,b denote the
overcategory whose objects are pairs [P, P → S], where P ∈ P and the map P → S
sends α 7→ a and ω 7→ b. Define

CP(S)(a, b) = N(P ↓ S)a,b.

The object CP is simply an assignment which takes a simplicial set S with two
distinguished vertices and produces a “P-mapping space.” However, if P is closed
under the wedge operation (i.e. for any P1, P2 ∈ P one has P1 ∨ P2 ∈ P), then CP

may be given the structure of a functor sSet→ sCat in the evident way.

Definition 5.4. We call a subcategory G ⊆ sSet∗,∗ a category of gadgets if it
satisfies the following properties:
(1) G contains the category Nec,
(2) For every object X ∈ G and every necklace T , all maps T → X are contained

in G, and
(3) For any X ∈ G, the simplicial set C(X)(α, ω) is contractible.

The category G is said to be closed under wedges if it is also true that
(4) For any X,Y ∈ G, the wedge X ∨ Y also belongs to G.

The above definition can be generalized somewhat by allowing Nec → G to be
an arbitrary functor over a natural transformation in sSet; we do not need this
generality in the present paper.

Proposition 5.5. Let G be a category of gadgets. Then for any simplicial set S
and any a, b ∈ S0, the natural map

Cnec(S)(a, b) −→ CG(S)(a, b)
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(induced by the inclusion Nec ↪→ G) is a Kan equivalence. If G is closed under
wedges then the map of simplicial categories Cnec(S)→ CG(S) is a weak equivalence.

Proof. Let j : (Nec ↓ S)a,b → (G ↓ S)a,b be the functor induced by the inclusion
map Nec ↪→ G. The map in the statement of the proposition is just the nerve
of j. To verify that it is a Kan equivalence, it is enough by Quillen’s Theorem
A [Q] to verify that all the overcategories of j are contractible. So fix an object
[X,X → S] in (G ↓ S)a,b. The overcategory (j ↓ [X,X → S]) is precisely the
category (Nec ↓ X)α,ω, the nerve of which is Cnec(X)(α, ω). By Theorem 5.2 and
our assumptions on G, this is contractible.

The second statement of the result is a direct consequence of the first.
�

6. Properties of categorification

In this section we establish two main properties of the categorification functor C.
First, we prove that there is a natural weak equivalence C(X × Y ) ' C(X)×C(Y ).
Second, we prove that whenever S → S′ is a weak equivalence in sSetJ it follows
that C(S)→ C(S′) is a weak equivalence in sCat. These properties are also proven
in [L], but the proofs we give here are of a different nature and make central use of
the Cnec functor.

If T1, . . . , Tn are necklaces then they are, in particular, ordered simplicial sets in
the sense of Definition 3.3. So T1 × · · · × Tn is also ordered, by Lemma 3.6. Let
G be the full subcategory of sSet∗,∗ = (∂∆1 ↓ sSet) whose objects are products of
necklaces with a map f : ∂∆1 → T1 × · · · × Tn that has f(0) � f(1).

Proposition 6.1. The category G is a category of gadgets in the sense of Defini-
tion 5.4.

For the proof of this one needs to verify that C(T1 × · · · × Tn)(α, ω) ' ∗. This is
not difficult, but is a bit of a distraction; we prove it later as Proposition A.4.

Proposition 6.2. For any simplicial sets X and Y , both C(X×Y ) and C(X)×C(Y )
are simplicial categories with object set X0×Y0. For any a0, b0 ∈ X and a1, b1 ∈ Y ,
the natural map

C(X × Y )(a0a1, b0b1)→ C(X)(a0, b0)× C(Y )(a1, b1)

induced by C(X × Y ) → C(X) and C(X × Y ) → C(Y ) is a Kan equivalence. Con-
sequently, the map of simplicial categories

C(X × Y )→ C(X)× C(Y )

is a weak equivalence in sCat.

Proof. Let G denote the above category of gadgets, in which the objects are products
of necklaces. By Theorem 5.2 and Proposition 5.5 it suffices to prove the result for
CG in place of C.

Consider the functors

(G ↓ X × Y )a0a1,b0b1

φ //(G ↓ X)a0,b0 × (G ↓ Y )a1,b1
θ
oo

given by

φ : [G,G→ X × Y ] 7→
(
[G,G→ X × Y → X], [G,G→ X × Y → Y ]

)
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and
θ :
(
[G,G→ X], [H,H → Y ]

)
7→ [G×H,G×H → X × Y ].

Note that we are using that the subcategory G is closed under finite products.
It is very easy to see that there is a natural transformation id→ θφ, obtained by

using diagonal maps, and a natural transformation φθ → id, obtained by using pro-
jections. As a consequence, the maps θ and φ induce inverse homotopy equivalences
on the nerves. This completes the proof.

�

Let E : Set→ sSet denote the 0-coskeleton functor (see [AM]). For any simplicial
set X and set S, we have Hom(X,ES) = Hom(X0, S). In particular, if n ∈ N we
denote En = E{0, 1, . . . , n}.

Lemma 6.3. For any n ≥ 0, the simplicial category C(En) is contractible in sCat—
that is to say, all the mapping spaces in C(En) are contractible.

Proof. By Theorem 5.2 it is sufficient to prove that the mapping space Cnec(En)(i, j)
is contractible, for every i, j ∈ {0, 1, . . . , n}. This mapping space is the nerve of the
overcategory (Nec ↓ En)i,j .

Observe that if T is a necklace then any map T → En extends uniquely over
∆[T ]. This is because maps into En are determined by what they do on the 0-
skeleton, and T ↪→ ∆[T ] is an isomorphism on 0-skeleta.

Consider two functors

f, g : (Nec ↓ En)i,j → (Nec ↓ En)i,j
given by

f : [T, T x−→ En] 7→ [∆[T ],∆[T ] x̄−→ En] and g : [T, T x−→ En] 7→ [∆1,∆1 z−→ En].

Here x̄ is the unique extension of x to ∆[T ], and z is the unique 1-simplex of En

connecting i to j. Observe that g is a constant functor.
It is easy to see that there are natural transformations id→ f ← g. The functor

g factors through the terminal category {∗}, so after taking nerves the identity map
is null homotopic. Hence (Nec ↓ En)i,j is contractible.

�

For completeness (and because it is short) we include the following lemma, es-
tablished in [L, Proof of 2.2.5.1]:

Lemma 6.4. The functor C : sSet→ sCat preserves cofibrations.

Sketch of proof. Every cofibration in sSet is obtained by compositions and cobase
changes from boundary inclusions of simplices. It therefore suffices to show that for
each n ≥ 0 the map f : C(∂∆n)→ C(∆n) is a cofibration in sCat. Let 0 ≤ i, j ≤ n.
If i > 0 or j < n then (Nec ↓ ∆n)i,j ∼= (Nec ↓ ∂∆n)i,j , whereby

f(i, j) : C(∂∆n)(i, j)→ C(∆n)(i, j)

is an isomorphism by Proposition 4.3. For the remaining case i = 0, j = n, the map
f(0, n) is the inclusion of the boundary of a cube b : ∂((∆1)n−1)→ (∆1)n−1.

Let U : sSet → sCat denote the functor which sends a simplicial set S to the
unique simplicial category U(S) with two objects x, y and morphisms Hom(x, x) =
Hom(y, y) = {∗}, Hom(y, x) = ∅, and Hom(x, y) = S. In view of the generating
cofibrations for sCat (see [B]), it is easy to show that U preserves cofibrations.
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Hence U(b) is a cofibration. Notice that f is the pushout of U(b) along the obvious
map U [∂((∆1)n−1)]→ C(∂∆n) sending x 7→ 0 and y 7→ n. Thus, f is a cofibration.

�

Lemma 6.5. The coherent nerve functor N : sCat → sSetJ preserves fibrant ob-
jects.

Sketch of proof. Fibrant objects in sSetJ are characterized as those objects that
have the right lifting property with respect to inner horn inclusions fn,k : Λnk → ∆n,
where 0 < k < n. Hence, it suffices to show that each C(fn,k) is an acyclic
cofibration. This calculation is similar to the one in the proof of Lemma 6.4.

�

In the following proposition, we use the terminology from the Joyal model struc-
ture (see Remark 2.4).

Proposition 6.6. If S → S′ is a weak equivalence in sSetJ then C(S)→ C(S′) is
a weak equivalence of simplicial categories.

Proof. For any simplicial set X, the map C(X×En)→ C(X) induced by projection
is a weak equivalence in sCat. This follows by combining Proposition 6.2 with
Lemma 6.3:

C(X × En) ∼−→ C(X)× C(En) ∼−→ C(X).
Since X q X ↪→ X × E1 is a cofibration in sSet, C(X) q C(X) = C(X q X) →
C(X × E1) is a cofibration in sCat, by Lemma 6.4. It follows that C(X × E1) is a
cylinder object for C(X) in sCat. So if D is a fibrant simplicial category we may
compute homotopy classes of maps [C(X),D] as the coequalizer

coeq
(
sCat(C(X × E1),D) ⇒ sCat(C(X),D)

)
.

But using the adjunction, this is isomorphic to

coeq
(
sSet(X × E1, ND) ⇒ sSet(X,ND)

)
.

Since D is fibrant in sCat, ND is fibrant in sSetJ by Lemma 6.5. So the above
coequalizer is [X,ND], and we have identified

[C(X),D] ∼= [X,ND].(6.7)

Now let S → S′ be a weak equivalence in sSetJ . Then C(S) → C(S′) is a map
between cofibrant objects of sCat. To prove that it is a weak equivalence in sCat it
is sufficient to prove that the induced map on homotopy classes

[C(S′),D]→ [C(S),D]

is a bijection, for every fibrant object D ∈ sCat. Since ND is fibrant and S → S′

is a weak equivalence, we have that [S′, ND] → [S,ND] is a bijection; the result
then follows by (6.7). �

Corollary 6.8. The functors C : sSetJ � sCat : N are a Quillen pair.

Proof. The functor C preserves cofibrations by Lemma 6.4 and preserves weak
equivalences by Proposition 6.6.

�
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7. Background on mapping spaces in model categories

Given two objects X and Y in a model category M, there is an associated
simplicial set hMapM(X,Y ) called a “homotopy function complex” from X to Y .
The basic theory of these function complexes is due to Dwyer-Kan [DK1, DK2,
DK3]. As recounted in the introduction, there are several different ways to write
down models for these function complexes, all of which turn out to be weakly
equivalent. In this section we give a brief review of some of this machinery.

7.1. Mapping spaces via cosimplicial resolutions. Let M be a model category,
and let cM be the Reedy model category of cosimplicial objects in M [H, Chapter
15]. For any X ∈M we will write cX for the constant cosimplicial object consising
of X in every dimension, where every coface and codegeneracy is the identity.

If X ∈ M, a cosimplicial resolution of X is a Reedy cofibrant replacement
Q•

∼−→ cX. Given such a cosimplicial resolution and an object Z ∈ M, we may
form the simplicial set M(Q•, Z) given by

[n] 7→M(Qn, Z).

It is known [H, 16.5.5] that if Z → Z ′ is a weak equivalence between fibrant objects
then the induced map M(Q•, Z) → M(Q•, Z ′) is a Kan equivalence of simplicial
sets.

7.2. Mapping spaces via nerves of categories. For any object X ∈ M, let
Q(X) be the category whose objects are pairs [Q,Q→ X] where Q is cofibrant and
Q→ X is a weak equivalence. For any object Y ∈M, there is a functor

M(−, Y ) : Q(X)op −→ Set

sending [Q,Q → X] to M(Q,Y ). We can regard this functor as taking values in
sSet by composing with the embedding Set ↪→ sSet.

Consider the simplicial set hocolimQ(X)op M(−, Y ). We fix our model for the
hocolim functor to be the result of first taking the simplicial replacement of a
diagram and then applying geometric realization. Notice in our case that in di-
mension n the simplicial replacement consists of diagrams of weak equivalences
Q0 ← Q1 ← · · · ← Qn over X (with each Qi → X in Q(X)), together with a map
Q0 → Y . This shows that the simplicial replacement is nothing but the nerve of
the category whose objects are zig-zags [X ∼←− Q → Y ] where Q is cofibrant and
Q→ X is a weak equivalence; a map from [X ∼←− Q→ Y ] to [X ∼←− Q′ → Y ] is a
map Q→ Q′ making the evident diagram commute.

Categories of zig-zags like the one considered above were first studied in [DK3].
There are many variations, and it is basically the case that all sensible variations
have weakly equivalent nerves; moreover, these nerves are weakly equivalent to the
homotopy function complex hMap(X,Y ) (defined to be the space of maps in the
simplicial localization of M with respect to the weak equivalences). We will next
recall some of this machinery. In addition to [DK3], see [D1].

Following [DK3], write (Wcofib)−1M(Wfib)−1(X,Y ) to denote the category
whose objects are zig-zags

X U //∼oooo V Y,oo
∼oo

and where the maps are natural transformations of diagrams which are the identity
on X and on Y . Similarly, let W−1MW−1(X,Y ) be the category whose objects
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are zig-zags
X

∼←− U −→ V
∼←− Y,

let M(Wfib)−1M(X,Y ) be the category whose objects are zig-zags

X −→ U
∼

�− V −→ Y,

and so on.
Note that there are natural inclusions of two types: an example of the first is

M(Wfib)−1(X,Y ) ↪→ M W−1(X,Y ) (induced by Wfib ↪→ W), and an example of
the second is

M W−1(X,Y ) ↪→M W−1 M(X,Y )
which sends

[X ∼←− A −→ Y ] 7→ [X id−→ X
∼←− A −→ Y ].

The following proposition is a very basic one in this theory, and will be used
often in the remainder of the paper; we have included the proof for completeness,
and because it is simple.

Proposition 7.3. When Y is fibrant, the maps in the following commutative square
all induce weak equivalences on nerves:

M(Wfib)−1(X,Y ) // //
��

��

M(Wfib)−1M(X,Y ).
��

��
MW−1(X,Y ) // // MW−1M(X,Y )

Proof. Denote all the inclusions in the square by j.
We start with the left vertical map. Given a zig-zag [X ∼←− A −→ Y ], functo-

rially factor the map A → X × Y as A
∼
� P � X × Y . Since Y is fibrant the

projection X × Y → X is a fibration, and so the composite P → X is a fibra-
tion as well. Define a functor F : M W−1(X,Y ) → M(Wfib)−1(X,Y ) by sending
[X ∼←− A −→ Y ] to [X

∼
�− P −→ Y ]. There are natural transformations id→ j◦F

and id→ F ◦ j, which shows that on nerves F and j are homotopy inverses.
A very similar proof works for the right vertical map in the diagram. Given a

zig-zag [X −→ U
∼←− V −→ Y ], functorially factor V → U×Y as V

∼
� P � U×Y .

Define F : MW−1M(X,Y )→M(Wfib)−1M(X,Y ) by sending

[X −→ U
∼←− V −→ Y ] 7→ [X −→ U

∼
�− P −→ Y ].

This gives a homotopy inverse for j.
For the top horizontal map we do not even need to use that Y is fibrant. Define

a homotopy inverse by sending [X −→ U
∼

�− V −→ Y ] to the zig-zag [X
∼

�−
P −→ Y ] where P is the pullback of X −→ U

∼
�− V .

Finally, the bottom horizontal map induces a weak equivalence on nerves because
the other three maps do. �

Let QX• → X be a cosimplicial resolution of X in cM. Following [DK3], we
now relate the simplicial set M(QX•, Y ) to the nerves of the categories of zig-zags
considered above.

For any simplicial set K, let ∆K be the category of simplices of K. This is none
other than the overcategory (S ↓ K), where S : ∆→ sSet is the functor [n] 7→ ∆n.



26 DANIEL DUGGER AND DAVID SPIVAK

It is known that the nerve of ∆K is naturally weakly equivalent to K (see [D1,
text prior to Prop. 2.4] for an explanation).

There is a functor ∆M(QX•, Y )→ M(Wfib)−1(X,Y ) sending ([n], QXn → Y )
to [X

∼
�− QXn −→ Y ].

Proposition 7.4. Let QX• → X be a Reedy cofibrant resolution of X. Then
∆M(QX•, Y )→M(Wfib)−1(X,Y ) induces a weak equivalence on nerves.

Proof. The result is proven in [DK3], but see also [D1, Thm. 2.4]. �

Remark 7.5. To briefly summarize the main points of this section, we have that
when Y is fibrant the following maps of categories all induce weak equivalences on
the nerves:

∆M(QX•, Y ) // M Wfib−1(X,Y ) // // M W−1(X,Y ) // // M W−1 M(X,Y )

In particular, the nerves all have the homotopy type of the homotopy function
complex hMap(X,Y ).

8. Dwyer-Kan models for quasi-category mapping spaces

In this section we give some other models for the mapping spaces in a quasicate-
gory. These have the advantage of being relatively easy to compute. However, they
have the disadvantage that they do not admit a composition law.

8.1. The canonical cosimplicial framing on sSetJ . Let E : Set→ sSet denote
the 0-coskeleton functor, as in Section 6. For a set S, we may also describe ES as
the nerve of the groupoid EGS with object set S and a single morphism a→ b for
each a, b ∈ S.

Lemma 8.2. For any nonempty set S, the map ES → ∆0 is an acyclic fibration
in sSetJ .

Proof. The acyclic fibrations in the Joyal model category sSetJ are the same as
those in the Kan model category sSetK , as both model categories have the same
cofibrations. It is easy to check that ES → ∆0 has the right lifting property with
respect to the maps ∂∆n → ∆n. �

The forgetful functor ∆ ↪→ Set describes a cosimplicial set whose nth object is
[n] = {0, 1, . . . , n}. Applying the functor E gives a cosimplicial object [n] 7→ En =
N(EG([n])) in sSetJ . It is easy to check that E• is Reedy cofibrant in c(sSetJ), and
the above lemma shows that each En is contractible in sSetJ . Note that the evident
inclusion of categories [n] ↪→ EG([n]) induces a levelwise cofibration ∆• ↪→ E•.
8.3. Three cosimplicial versions of ∆1.

In his book, Lurie at various times uses three internal models for the mapping
space between vertices in a simplicial set S. They are called HomR

S , HomL
S , and

HomS ; the descriptions of all of these can be found in [L, Section 1.2.2]. In this
subsection, we show that each of these can be understood as the mapping spaces
coming from various cosimplicial resolutions of ∆1. We also give one new model,
HomE

S . See Remark 8.8.
Recall that for any simplicial sets M and N , the join M ? N is a simplicial set

with
(M ?N)n =

∐
−1≤i≤n

Mi ×Nn−i−1,
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where we put M−1 = N−1 = ∆0 (see [L, 1.2.8.1]). Note that ? is a bifunctor and
that M ? ∅ = ∅ ?M = M , so in particular there are natural inclusions M ↪→M ?N
and N ↪→M ?N .

We let CR(M) and CL(M) denote the quotient (M ?∆0)/M and (∆0 ?M)/M ,
respectively. For any simplicial set M , let Ccyl(M) be the pushout

∂∆1 ←M × ∂∆1 ↪→M ×∆1.

Note that there is a natural inclusion CR(M) ↪→ Ccyl(M), and a natural surjection
Ccyl(M) → CR(M) exhibiting CR(M) as a retract of Ccyl(M). The same can be
said if we replace CR with CL.

Let C•R (respectively C•L) denote the cosimplicial space [n] 7→ CR(∆n) (resp.
[n] 7→ CL(∆n)). Write C•cyl for the cosimplicial space [n] 7→ Ccyl(∆n). Finally,
write C•E for the cosimplicial space obtained as the pushout of

∂∆1 ← ∂∆1 × E• ↪→ ∆1 × E•

(where the ∂∆1 and ∆1 denote constant cosimplicial spaces).
The map of cosimplicial spaces ∆• → E• gives us a map C•cyl → C•E , so that we

have maps

C•R

&&NNNNNNN

C•cyl // C•E .

C•L

88qqqqqqq

(8.3)

Note that in each of these cosimplicial spaces, the 0th space is ∆1. So every level
of each of the above four cosimplicial spaces comes equipped with a canonical map
to ∆1.

Recall the notation sSet∗,∗ = (∂∆1 ↓ sSetJ).

Proposition 8.4. (a) Each of the maps c(∂∆1)→ C•R, c(∂∆1)→ C•L, c(∂∆1)→
C•cyl, and c(∂∆1)→ C•E is a Reedy cofibration.

(b) Each of C•R, C•L, C•cyl, and C•E is Reedy cofibrant as an object of c(sSet∗,∗)J .
(c) Each of the maps of simplicial sets CnR → ∆1, CnL → ∆1, Cncyl → ∆1, and

CnE → ∆1 is a Joyal equivalence.
(d) Consequently, each of C•R, C•L, C•cyl, and C•E is a cosimplicial resolution of

∆1 with respect to the model category (sSet∗,∗)J (where ∆1 is regarded as an
element of this undercategory in the usual way).

Proof. Parts (a) and (b) are obvious, and (d) follows immediately from (b) and (c).
For (c), note first that CnE → ∆1 is easily seen to be Joyal equivalence. For CnE is
the pushout of

∂∆1 ∼←− ∂∆1 × En ↪→ ∆1 × En,
where the indicated map is a Joyal equivalence by Lemma 8.2. It follows from
left properness of sSetJ that ∆1 × En → CnE is a Joyal equivalence. Using that
∆1 × En → ∆1 is a Joyal equivalence (Lemma 8.2 again), it follows immediately
that CnE → ∆1 is also one.

The arguments for CnR, CnL, and Cncyl are more complicated. Picking the former
for concreteness, there are various sections of the map CnR → ∆1. It will be sufficient
to show that any one of these is an acyclic cofibration, which we do by exhibiting
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it as a composition of cobase changes of inner horn inclusions. This is not difficult,
but it is a little cumbersome; we postpone the proof until the appendix, as Lemma
A.7. �

8.5. Application to mapping spaces. For every S ∈ sSetJ and every a, b ∈ S,
define HomR

S (a, b) to be the simplicial set sSet∗,∗(C•R, S). Note that this is also the
pullback of

∗ (a,b)−→ S × S � sSet(C•R, S).

Define HomL
S(a, b), Homcyl

S (a, b), and HomE
S (a, b) analogously, and note that Dia-

gram (8.3) induces natural maps

HomR
S (a, b)

HomE
S (a, b) // Homcyl

S (a, b)

44jjjjjjjj

**TTTTTTTT

HomL
S(a, b).

(8.6)

Corollary 8.7. When S ∈ sSetJ is fibrant and a, b ∈ S, the four natural maps
in (8.6) are Kan equivalences of simplicial sets. These simplicial sets are models
for the homotopy function complex hMapsSet∗,∗(∆

1, S), where S is regarded as an
object of sSet∗,∗ via the map ∂∆1 → S sending 0→ a and 1→ b.

Proof. This is immediate from Proposition 8.4 and [H, 16.5.5]. �

Remark 8.8. For a simplicial set S and vertices a, b ∈ S0, our notation HomR
S (a, b)

and HomL
S(a, b) agrees with that of [L, Section 1.2.2]. Our notation Homcyl

S (a, b)
is what Lurie denotes HomS(a, b). It can also be described as the fiber of the
morphism of simplicial mapping spaces MapsSet(∆1, S) → MapsSet(∂∆1, S) over
the point (a, b). The model HomE

S (a, b) does not seem to appear in [L].

The following calculation will be needed in the next section:

Proposition 8.9. Let T be a necklace. Then hMap(sSet∗,∗)J
(∆1, T ) is contractible.

Proof. Recall from Lemma 3.1 that T → ∆[T ] is a weak equivalence in sSetJ . Also,
∆[T ] is fibrant in sSetJ because it is the nerve of a category (as is any ∆k). We
may therefore model our homotopy function complex by

sSet∗,∗(C•R,∆[T ])

where C•R is the cosimplicial resolution of ∆1 considered in this section.
It is easy to check that in sSet∗,∗ there is a unique map from CnR to ∆[T ], for

each n. Therefore we have sSet∗,∗(C•R,∆[T ]) = ∗, and this completes the proof. �

9. Connections between the two approaches

In this section we prove that for any simplicial set S and any a, b ∈ S0, the cate-
gorification mapping space C(S)(a, b) is naturally weakly equivalent to the Dwyer-
Kan mapping space hMap(sSet∗,∗)J

(∆1, S). As a corollary, we prove that for any
simplicial category D the map C(ND)→ D is a weak equivalence in sCat.
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If S is a simplicial set and a, b ∈ S, let us use the notation hMap(S)a,b as
shorthand for a homotopy function complex hMap(sSet∗,∗)J

(∆1, S).
Let Y denote the full subcategory of sSet∗,∗ whose objects are spaces Y such

that hMap(Y )α,ω ' ∗ and C(Y )(α, ω) ' ∗. Note that Y contains the category Nec,
by Proposition 8.9 and Corollary 3.9. So clearly Y is a category of gadgets in the
sense of Definition 5.4. Let Yf denote the full subcategory of Y consisting of those
objects which are fibrant in sSetJ . Let CY and CYf be as defined in Section 5.3.

Remark 9.1. Once we are done proving the main result of this section, we will
know that the conditions C(Y )(α, ω) ' ∗ and hMap(Y )α,ω ' ∗ are equivalent. At
the moment, however, we do not know this; so including both conditions in the
definition of Y is not redundant.

Let C• be a cosimplicial resolution of ∆1 in sSetJ . Let C•
∼
� R•

∼
−� c(∆1) be

a factorization into a Reedy acyclic cofibration followed by Reedy fibration (which
will necessarily be acyclic as well). By [H, Prop. 15.3.11] the maps Rn → ∆1 are
fibrations in sSetJ . Since ∆1 is fibrant in sSetJ (being the nerve of a category),
the objects Rn are fibrant as well.

Proposition 9.2. If S is fibrant in sSetJ and a, b ∈ S0, then the following is a
commutative diagram in which all the maps are Kan equivalences:

Cnec(S)(a, b) ∼ // CY(S)(a, b) CYf (S)(a, b)∼oo

N∆ Hom(C•, Sa,b)

∼

OO

N∆ Hom(R•, Sa,b).∼
oo

∼

OO

Proof. Proposition 5.5 shows that Cnec(S)(a, b)→ CY(S)(a, b) is a Kan equivalence.
Let us show that CYf (S)(a, b)→ CY(S)(a, b) is a Kan equivalence. Recall that this
map is the nerve of the evident inclusion of categories j : (Yf ↓ S)a,b → (Y ↓ S)a,b.
For a simplicial set X, let X

∼
� X̂ denote a (functorial) fibrant replacement of

X in sSetJ . Since S is fibrant, there is a map Ŝ → S such that the composition
S → Ŝ → S is the identity. Define a functor

F : (Y ↓ S)a,b → (Yf ↓ S)a,b

by sending the pair [Y, Y → S] to the pair [Ŷ , Ŷ → Ŝ → S]. For this to make sense
we need to know that Ŷ is in Yf ; this is true because changing from Y → Ŷ does
not change the Dwyer-Kan mapping space hMap(−)a,b nor, by Proposition 6.6,
the C(−)(a, b) mapping space. It is easy to see that there is a natural transforma-
tion between the composite jF (resp. Fj) and the identity, so j induces a Kan
equivalence of the nerves.

Next consider the map N∆ Hom(R•, Sa,b) → CYf (S)(a, b). This is again the
nerve of a functor

f : ∆ Hom(R•, Sa,b)→ (Yf ↓ S)a,b
which sends [[n], Rn → S] to [Rn, Rn → S]. We will verify that the overcategories of
f are contractible, hence it induces a Kan equivalence of the nerves. (For typograph-
ical reasons, we may drop the subscripts a, b, etc.) Pick an object y = [Y, Y → S]
in (Yf ↓ S). The overcategory (f ↓ y) has objects [[n], Rn → Y ] and the evident
morphisms; that is, (f ↓ y) = ∆ Hom(R•, Y ). But since Y is fibrant, Hom(R•, Y )
is a model for hMap(Y )a,b, and this is contractible because Y ∈ Yf .
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The map Hom(R•, S) → Hom(C•, S) is a Kan equivalence because C• → R•

is a Reedy weak equivalence between Reedy cofibrant objects and S is fibrant; see
[H, 16.5.5]. Hence, the map N∆ Hom(R•, Sa,b) → N∆ Hom(C•, Sa,b) is a Kan
equivalence.

The final map ∆ Hom(C•, Sa,b)→ CY(S)(a, b) is a Kan equivalence by the two-
out-of-three property. �

For the rest of this section we write A = sSet∗,∗, to ease the cumbersome typog-
raphy.

The above proposition gives a simple zig-zag of Kan equivalences between
Cnec(S)(a, b) and N∆ Hom(C•, Sa,b) for any cosimplicial resolution C• of ∆1 in
sSetJ . In Proposition 9.3 we will present another simple zig-zag which is some-
times useful. Define

φ : (Nec ↓ S)a,b → AW−1A(∆1, Sa,b)(9.2)

by sending [T, T → S] to [∆1 → ∆[T ] ∼←− T → S]. Here ∆[T ] is the associated
simplex to T , described in Section 3, which is functorial in T . The map ∆1 → ∆[T ]
is the unique 1-simplex connecting the initial and final objects. Note that there is
also a functor

j : ∆ Hom(C•, S)→ AW−1A(∆1, S)(9.2′)

which sends [[n], Cn → S] to [∆1 id−→ ∆1 ∼←− Cn → S], and by Remark 7.5 this
functor induces a Kan equivalence on nerves.

Proposition 9.3. For any fibrant simplicial set S ∈ sSetJ and a, b ∈ S0, the maps

Cnec(S)(a, b)
Nφ−→ N

[
AW−1A(∆1, Sa,b)

] Nj←− N
[
∆ Hom(C•, Sa,b)

]
,

where φ and j are as in (9.2) and (9.2′), are Kan equivalences.

Proof. We consider the following diagram of categories, where we have suppressed
all mention of a and b, but everything is suitably over ∂∆1:

(Nec ↓ S)

φ

��

// (Y ↓ S) ∆ Hom(C•, S).

j0wwnnnnnnnnnnn
oo

AW−1A(∆1, S)
π2 //

A Wfib−1 A(∆1, S)
π1 //

j2
oo AW−1(∆1, S)

i

OO

j1
oo

The nerve of each map in the top row is from Proposition 9.2, where it is shown
to be a Kan equivalence. The map φ was defined above. The maps j0, j1, j2, i, π1,
and π2 are in some sense self-evident, but we describe them now (in that order).
The symbol “ ∼ ” in this proof always denotes a Joyal weak equivalence.

The map j0 sends [[n], Cn → S] to [∆1 ∼←− Cn → S]; j1 sends [∆1 ∼←− X → S]
to [∆1 id−→ ∆1

∼
�− X ′ → S], where X

∼
� X ′ � ∆1×S is a functorial factorization

of X → ∆1 × S; and j2 is induced by the inclusion Wfib ↪→ W . Note that the
composite j2j1j0 is the map j from the statement of the proposition. The map i
sends [∆1 ∼←− X → S] to the pair [X,X → S] (note that if X ' ∆1 then X ∈ Y by
Proposition 6.6 and the homotopy invariance of the Dwyer-Kan mapping spaces).
Finally, the maps π1 and π2 are functors giving homotopy inverses to j1 and j2.
The functor π1 sends [∆1 → X

∼
�− Y → S] to [∆1 ∼←− (∆1 ×X Y ) → S], and π2

sends [∆1 → X
∼←− Y → S] to [∆1 → X

∼
�− Y ′ → S] where Y ′ is obtained from
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the functorial factorization of Y → X × S into Y
∼
� Y ′ � X × S. It is easy to see

that there are natural transformations between the composite jiπi, πiji, and their
respective identities, thus showing that these maps are homotopy inverses.

Next one should check that the functor iπ1π2φ is connected to the top map
(Nec ↓ S) → (Y ↓ S) by a zig-zag of natural transformations (this is easy), and
hence the two maps induce homotopic maps on nerves. So the (nerve of the) large
rectangle in the above diagram commutes in the homotopy category. The right-
hand triangle commutes on the nose.

The map j0 induces a Kan equivalence on nerves by Remark 7.5. Returning
to our original diagram and the sentence immediately following it, the two-out-of-
three property implies that i induces a Kan equivalence on nerves. We have already
shown that π1π2 and j2j1 do so as well; therefore the same is true for φ and j. �

Remark 9.4. The above result in some sense explains the role of necklaces in our
story. If T is a necklace then a map T → Sa,b gives us, in a canonical way, a zig-zag

∆1 ↪→ ∆[T ] ∼←− T → S

in AW−1A(∆1, S), which represents a map ∆1 → S in Ho (sSetJ).

9.5. The counit of categorification. Our next result concerns the counit
ε : CN → idsCat for the adjunction C : sSetJ � sCat : N . The proof is only a slight
modification of that for Proposition 9.2 above. For a proof using very different
methods, see [L, Theorem 2.2.0.1].

Proposition 9.6. Let D be a simplicial category all of whose mapping spaces are
Kan complexes. Then the counit map CND→ D is a weak equivalence in sCat.

Proof. Since C(ND) is a simplicial category with the same object set as D, it suffices
to show that for any a, b ∈ ob D the map

C(ND)(a, b)→ D(a, b)

is a Kan equivalence.
Let C• be the cosimplicial resolution C•R from Section 8, so that we have Cn =

(∆n ?∆0)/∆n. Observe that C(Cn) is a simplicial category with two objects 0 and
1, and following [L, Section 2.2.2] let Qn denote the mapping space C(Cn)(0, 1).
By Proposition 6.6 and Proposition 8.4(c) the map Qn → C(∆1)(0, 1) = ∗ is a Kan
equivalence, hence Qn is contractible. Also, since C•R is Reedy cofibrant it follows
readily that Q• is also Reedy cofibrant. So the cosimplicial space Q• is a Reedy
cosimplicial resolution of a point in sSetK .
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Consider the following diagram in sSetK :

C(ND)(a, b) // D(a, b)

colim
T→ND

C(T )(α, ω)

OO

// colim
Y→ND

C(Y )(α, ω)

OO

colim
[n],Cn→ND

C(Cn)(α, ω)oo

hocolim
T→ND

C(T )(α, ω)

OO

//

∼
��

hocolim
Y→ND

C(Y )(α, ω)

∼
��

OO

hocolim
[n],Cn→ND

C(Cn)(α, ω)

∼
��

oo

OO

hocolim
T→ND

∗ // hocolim
Y→ND

∗ hocolim
[n],Cn→ND

∗oo

For the colimits in the left-hand column the indexing category is (Nec ↓ ND)a,b. For
the middle column it is (Y ↓ ND)a,b, where Y is the category of gadgets described at
the beginning of this section. For the right-hand column the colimits are indexed by
the category ∆ Hom(C•, NDa,b). The maps between columns (except at the very
top) come from the evident maps between indexing categories. Finally, the top
vertical map in the middle column comes from taking a map Y → ND, adjointing
it to give C(Y )→ D, and then using the induced map C(Y )(α, ω)→ D(a, b). It is
easy to see that the diagram commutes.

The indicated maps are Kan equivalences because the mapping spaces in
C(T ), C(Y ) and C(Cn) are all contractible. The bottom horizontal row is
Cnec(ND)(a, b)→ CY(ND)(a, b)← N∆ Hom(C•, NDa,b), and these maps are Kan
equivalences by Proposition 9.2. It follows that the horizontal maps in the third
row are all Kan equivalences as well.

Now, the map hocolim[n],Cn→ND C(Cn)(α, ω)→ D(a, b) can be written as

hocolim
[n],C(Cn)→D

C(Cn)(α, ω)→ colim
[n],C(Cn)→D

C(Cn)(α, ω)→ D(a, b).

To give a map C(Cn) → D over a, b is exactly the same as giving a map Qn =
C(Cn)(α, ω)→ D(a, b). So the above maps may also be written as

hocolim
[n],Qn→D(a,b)

Qn −→ colim
[n],Qn→D(a,b)

Qn −→ D(a, b).

By Lemma 9.7 below (using that D(a, b) is a Kan complex), the composite is a Kan
equivalence.

It now follows from our big diagram that hocolimY→ND C(Y )(α, ω)→ D(a, b) is
a Kan equivalence. Finally, by Theorem 5.2 the map

hocolim
T→ND

C(T )(α, ω)→ C(ND)(a, b)

is a Kan equivalence (this is the map Choc(ND)(a, b) → C(ND)(a, b) from the
statement of that theorem). It now follows at once that C(ND)(a, b) → D(a, b) is
a Kan equivalence. �

Lemma 9.7. Let U• be any cosimplicial resolution of a point with respect to sSetK .
Then for any Kan complex X, the composite

hocolim
[n],Un→X

Un −→ colim
[n],Un→X

Un −→ X.
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is a Kan equivalence.

Proof. The result is true for the cosimplicial resolution ∆• by [D2, Prop. 19.4].
There is a zig-zag U• → V • ← ∆• of Reedy weak equivalences, where V • is a
fibrant replacement of ∆•. Because of this, it is sufficient to show that if U• → V •

is a map between cosimplicial resolutions of a point and we know the result for one
of them, then we also know it for the other.

Let I = ∆M(U•, X) and J = ∆M(V •, X), and observe that our map U• → V •

induces a functor f : J → I.
Let ΓU : I → M be the functor [[n], Un → X] 7→ Un and let ΓV : J → M

be the functor [[n], V n → X] 7→ V n. Finally, let Θ: J → M be the functor
[[n], V n 7→ X] 7→ Un. Note that there is a natural transformation Θ → ΓV , and
also a natural transformation Θ→ ΓU ◦ f .

One considers the following diagram:

N∆M(U•, X) hocolimI ∗ hocolimI ΓU
∼oo // colimI ΓU

$$IIIIIIIIII

N∆M(V •, X)

OO

hocolimJ ∗

OO

hocolimJ Θ

OO

∼oo

∼
��

// colimJ Θ

OO

��

// X.

hocolimJ ΓV // colimJ ΓV

::uuuuuuuuu

The maps labelled ∼ are Kan equivalences because all the values of ΓV , ΓU , and Θ
are contractible.

The key observation is that the map M(V •, X)→M(U•, X) is a Kan equivalence
by [H, 16.5.5], since both V • and U• are cosimplicial resolutions of a point in sSetK
and X is fibrant. It follows that N∆M(V •, X) → N∆M(U•, X) is also a Kan
equivalence, and applying the two-out-of-three axiom to the diagram we obtain
that hocolimI ΓU → X is a Kan equivalence if and only if hocolimJ ΓV → X is a
Kan equivalence. This is what we wanted. �

9.8. Joyal equivalences and categorification. In this final section of the paper
we use our previous results to establish the equivalence between the homotopy
theories of quasi-categories and simplicial categories. This result was originally due
to Lurie [L], and the proof at this point is essentially the same as his—the key step
was Proposition 9.6 above.

Proposition 9.9. A map of simplicial sets X → Y is a Joyal equivalence if and
only if C(X)→ C(Y ) is a weak equivalence of simplicial categories.

Proof. ????? �

Corollary 9.10. The adjoint functors C : sSetJ � sCat : N are a Quillen equiva-
lence.

Proof. ????? �

Appendix A. Leftover proofs

In this section we give the proofs which were postponed in the body of the paper.
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A.1. Products of necklaces. Our first goal is to prove Proposition 6.1. Let
T1, . . . , Tn be necklaces, and consider the product X = T1×· · ·×Tn. The main thing
we need to prove is that whenever a �X b in X the mapping space C(X)(a, b) ' ∗
is contractible.

Definition A.2. An ordered simplicial set (X,�) is called strongly ordered if,
for all a � b in X, the mapping space C(X)(a, b) is contractible.

Note that in any ordered simplicial set X with a, b ∈ X0, we have a � b if
and only if C(X)(a, b) 6= ∅. Thus if X is strongly ordered then its structure as a
simplicial category, up to categorical equivalence, is completely determined by the
ordering on its vertices. We also point out that every necklace T ∈ Nec is strongly
ordered by Corollary 3.9.

Lemma A.3. Suppose given a diagram

X
f←− A g−→ Y

where X,Y, and A are strongly ordered simplicial sets and both f and g are simple
inclusions. Let B = X qA Y and assume the following conditions hold:
(1) A has finitely many vertices;
(2) Given any x ∈ X, the set Ax� = {a ∈ A |x �B a} has an initial element (an

element which is smaller than every other element).
(3) For any y ∈ Y and a ∈ A, if y �B a then y ∈ A.
Then B is strongly ordered.

Proof. By Lemma 3.6(8), B is an ordered simplicial set and the maps X ↪→ B
and Y ↪→ B are simple inclusions. We must show that for u, v ∈ B0 with u � v,
the mapping space C(B)(u, v) is contractible. Suppose that u and v are both in
X; then since X ↪→ B is simple, any necklace T → Bu,v must factor through X.
It follows that C(B)(u, v) = C(X)(u, v), which is contractible since X is strongly
ordered. The case u, v ∈ Y is analogous. We claim we cannot have u ∈ Y \A and
v ∈ X\A. For if this is so and if T → B is a spine connecting u to v, then there
is a last vertex j of T that maps into Y . The 1-simplex leaving that vertex then
cannot belong entirely to Y , hence it belongs entirely to X. So j is in both X and
Y , and hence it is in A. Then we have u � j and j ∈ A, which by assumption (3)
implies u ∈ A, a contradiction.

The only remaining case to analyze is when u ∈ X and v ∈ Y \A. Consider the
poset A0 of vertices of A, under the relation �. Let P denote the collection of
linearly ordered subsets S of A0 having the property that u � a � v for all a ∈ S.
That is, each element of P is a chain u � a1 � · · · � an � v where each ai ∈ A.
We regard P as a category, where the maps are inclusions. Also let P0 denote the
subcategory of P consisting of all subsets except ∅.

Define a functor D : P op → Cat by sending S ∈ P to

{[T, T ↪→ Bu,v] | S ⊆ JT },

the full subcategory of (Nec ↓ B)u,v spanned by objects T m−→ Bu,v for which m is
an injection and S ⊆ JT . Let us adopt the notation

MS(u, v) = colim
T∈D(S)

C(T )(α, ω).
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Note that there is a natural map

M∅(u, v) −→ colim
T∈(Nec↓S)u,v

C(T )(α, ω) ∼= C(B)(u, v).

The first map is not a priori an isomorphism because in the definition of D(∅)
we require that the map T → B be an injection. However, using Lemma 4.12 (or
Corollary 4.13) it follows at once that the map actually is an isomorphism.

We claim that for each S in P0 the “latching” map

LS : colim
S′⊃S

MS′(u, v)→MS(u, v)

is an injection, where the colimit is over sets S′ ∈ P which strictly contain S. To
see this, suppose that one has a triple [T, T ↪→ Bu,v, t ∈ C(T )(α, ω)n] giving an
n-simplex of MS′(u, v) and another triple [T ′, T ′ ↪→ Bu,v, t

′ ∈ C(U)(α, ω)n] giving
an n-simplex of MS′′(u, v). If these become identical in MS(u, v) then it must be
that they have the same flankification T̄ = Ū and t = t′. Note that every joint of
T is a joint of T̄ , so the joints of T̄ include both S′ and S′′. Because the joints of
any necklace are linearly ordered, it follows that S′ ∪ S′′ is linearly ordered. Since
T → T̄ is an injection, we may consider the triple [T̄ , T̄ ↪→ Bu,v, t] as an n-simplex
in MS′∪S′′(u, v), which maps to the two original triples in the colimit; this proves
injectivity.

We claim that the latching map L∅ : colimS∈P op
0
MS(u, v) → M∅(u, v) is an

isomorphism. Injectivity was established above. For surjectivity, one needs to
prove that if T is a necklace and T ↪→ Bu,v is an inclusion, then T must contain at
least one vertex of A as a joint. To see this, recall that every simplex of B either
lies entirely in X or entirely in Y . Since v /∈ X, there is a last joint j1 of T which
maps into X. If C denotes the bead whose initial vertex is j1, then the image of
C can not lie entirely in X; so it lies entirely in Y , which means that j1 belongs to
both X and Y—hence it belongs to A.

From here the argument proceeds as follows. We will show:
(i) The natural map hocolimS∈P op

0
MS(u, v) → colimS∈P op

0
MS(u, v) is a Kan

equivalence;
(ii) Each MS(u, v) is contractible, hence the above homotopy colimit is Kan equiv-

alent to the nerve ov P op0 ;
(iii) The nerve of P0 (and hence also P op0 ) is contractible.
This will prove that M∅(u, v) = C(B)(u, v) is contractible, as desired.

For (i) we refer to [D2, Section 13] and use the fact that P op0 has the structure of
a directed Reedy category. Indeed, we can assign a degree function to P that sends
a set S ⊆ A0 to the nonnegative integer |A0−S|; all non-identity morphisms in P op0

strictly increase this degree. By Proposition [D2, 13.3] it is enough to show that all
the latching maps LS are cofibrations, and this has already been established above.

For claim (iii), write θ for the initial vertex of Au�. Define a functor F : P0 → P0

by F (S) = S ∪ {θ}; note that S ∪ {θ} will be linearly ordered, so this makes sense.
Clearly there is a natural transformation from the identity functor to F , and also
from the constant {θ} functor to F . It readily follows that the identity map on
NP0 is homotopic to a constant map, hence NP0 is contractible.

Finally, for (ii) fix some S ∈ P0 and let u = a0 ≺ a1 ≺ . . . ≺ an ≺ an+1 = v
denote the complete set of elements of S ∪ {u, v}. A necklace T ↪→ Bu,v whose
joints include the elements of S can be split along the joints, and thus uniquely
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written as the wedge of necklaces Ti ↪→ Bai,ai+1 , one for each 0 ≤ i ≤ n. Under
this identification, one has

C(T )(α, ω) = C(T0)(α0, ω0)× · · · × C(Tn)(αn, ωn).

Thus D(p) is isomorphic to the category

(Nec ↓m X)u,a1 × (Nec ↓m A)a1,a2 × · · · × (Nec ↓m A)an−1,an
× (Nec ↓m Y )an,v,

where (Nec ↓m X)s,t denotes the category whose objects are [T, T → Xs,t] where
the map T → X is a monomorphism.

Now, it is a general fact about colimits taken in the category of (simplicial) sets,
that if Mi is a category and Fi : Mi → sSet is a functor, for each i ∈ {1, . . . , n},
then there is an isomorphism of simplicial sets

colim
M1×···×Mn

(F1 × · · · × Fn)
∼=−→
(

colim
M1

F1

)
× · · · ×

(
colim
Mn

Fn

)
.(A.2.2)

Applying this in our case, we find that

MS(u, v) ∼= C(X)(u, a1)× C(A)(a1, a2)× · · · × C(A)(an−2, an−1)× C(Y )(an−1, v).

Note that this is always contractible, since X,A, and Y are strongly ordered. This
proves (ii) and completes the argument. �

Proposition A.4. Let T1, . . . , Tm be necklaces. Then their product P = T1×· · ·×
Tm is a strongly ordered simplicial set.

Proof. We begin with the case P = ∆n1 × · · · × ∆nm , where each necklace is a
simplex, and show that P is strongly ordered. It is ordered by Lemma 3.6, so
choose vertices a, b ∈ P0 with a � b. If T is a necklace, any map T → ∆j extends
uniquely to a map ∆[T ]→ ∆j . It follows that any map T → Pa,b extends uniquely
to ∆[T ]→ Pa,b. Consider the two functors

f, g : (Nec ↓ P )a,b → (Nec ↓ P )a,b
where f sends [T, T → P ] to [∆[T ],∆[T ]→ P ] and g is the constant functor sending
everything to [∆1, x : ∆1 → P ] where x is the unique edge of P connecting a and
b. Then clearly there are natural transformations id→ f and g → f , showing that
the three maps id, f , and g induce homotopic maps on the nerves. So the identity
induces the null map, hence Cnec(P )(a, b) = N((Nec ↓ P )a,b) is contractible. The
result for P now follows by Theorem 5.2.

For the general case, assume by induction that we know the result for all products
of necklaces in which at most k− 1 of them are not equal to beads. The case k = 1
was handled by the previous paragraph. Consider a product

Y = T1 × · · · × Tk ×D
where each Ti is a necklace and D is a product of beads. Write Tk = B1∨B2∨· · ·∨Br
where each Bi is a bead, and let

Pj = (T1 × · · · × Tk−1)× (B1 ∨ · · · ∨Bj)×D.
We know by induction that P1 is strongly ordered, and we will prove by a second
induction that the same is true for each Pj . So assume that Pj is strongly ordered
for some 1 ≤ j < r.

Let us denote A = (T1 × · · · × Tk−1)×∆0 ×D and

Q = (T1 × · · · × Tk−1)×Bj+1 ×D.
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Then we have Pj+1 = Pj qA Q, and we know that Pj , A, and Q are strongly
ordered. Note that the maps A → Pj+1 and A → Q are simple inclusions: they
are the products of ∆0 → Bj (resp. ∆0 → Bj+1) with identity maps, and any
inclusion ∆0 → ∆m is clearly simple. It is easy to check that hypothesis (1)–(3) of
Lemma A.3 are satisfied, and so this finishes the proof. �

Proof of Proposition 6.1. This follows immediately from Proposition A.4. �

A.5. The category C(∆n). Our next goal is to give the proof of Lemma 2.6.
Recall that this says there is an isomorphism

C(∆n)(i, j)→ N(Pi,j)

for n ∈ N and 0 ≤ i, j ≤ n, where Pi,j is the poset of subsets of {i, i + 1, . . . , j}
containing i and j.

Proof of Lemma 2.6. The result is obvious when n = 0, so we assume n > 0. Let
X = (FU)•([n])(i, j) and Y = Pi,j . For each ` ∈ N, we will provide an isomorphism
X`
∼= Y`, and these will be compatible with face and degeneracy maps.

One understands X0 = FU([n])(i, j) as the set of free compositions of sequences
of morphisms in [n] which start at i and end at j. By keeping track of the set of
objects involved in this chain, we identifyX0 with the set of subsets of {i, i+1, . . . , j}
which contain i and j. This gives an isomorphism X0 → Y0.

Similarly for ` > 0, one has that X` is the set of free compositions of sequences of
morphisms in X`−1. This set is in one-to-one correspondence with the set of ways to
“parenthesize” the sequence i, . . . , j in such a way that every element is contained
in (` + 1)-many parentheses (and no closed parenthesis directly follows an open
parenthesis). Given such a parenthesized sequence, one can rank the parentheses
by “interiority.” The face and degeneracy maps on X are given by deleting or
repeating all the parentheses of a fixed rank.

Under this description, a vertex in an `-simplex in X is given by choosing a
rank, and then taking all the parentheses of that rank. By looking at only the
last elements before one such close-parenthesis, we get a subset of {i + 1, . . . , j}
containing j, and hence by unioning with {i}, a unique element of X0. Given two
ranks, the subset of {i+ 1, . . . , j} corresponding to the higher rank will contain the
subset corresponding to the lower rank. In fact, since one sees immediately that
an `-simplex in X is determined by its set of vertices, we can identify X` with the
set of sequences a0 ⊂ a1 ⊂ · · · ⊂ a` ⊂ {i, i + 1, . . . , j} containing i and j. This
is precisely the set of `-simplices of Y , so we have our isomorphism. It is clearly
compatible with face and degeneracy maps. �

A.6. Models for ∆1 in sSetJ . Our final goal is to complete the proof of Propo-
sition 8.4 by showing that for any n ≥ 1 the canonical maps CnR → ∆1, CnL → ∆1,
and Cncyl → ∆1 are all Joyal equivalences.

Given integers 0 ≤ k < n, define ∆n
k to be the quotient of ∆n obtained by

collapsing the initial ∆k to a point and the terminal ∆n−k−1 to a (different) point.
Note that ∆n

k has exactly two vertices, and there is a unique surjection ∆n
k → ∆1.

Note also that ∆n
n−1 = CnR and ∆n

0 = CnL.

Lemma A.7. For integers 0 ≤ k < n, the surjection ∆n
k → ∆1 is a Joyal equiva-

lence.
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Proof. When n = 1 the map is the identity and there is nothing to prove, so assume
n ≥ 2. The proof in the case k = 0 is different than all the others; we will treat it
at the end. Assume k ≥ 1.

Any non-empty ordered subset S ⊆ {0, . . . , n} represents a simplex in ∆n
k , which

we denote ∆S ∈ sSet/∆n
k
, and that simplex is non-degenerate if and only if S 6⊆

{0, . . . , k} and S 6⊆ {k+ 1, . . . , n}. For s ∈ S we will write ΛSs ∈ sSet/∆n
k

to denote
the horn in ∆S with distinguished point s.

Let X = X1 = ∆{k,k+1} in sSet/∆n
k
. We will show that the (injective) map

X → ∆n
k can be written as the composite of finitely many cobase extensions along

inner horn inclusions. This will prove the result by two-out-of-three.
Let S ⊆ {0, . . . , n} be a set of cardinality 3, such that k ∈ S 6⊆ {0, . . . , k}. If k

is not the smallest element of S, let ` = k; if k is the smallest, let ` be the second
element. Note that ∆S → ∆n

k is non-degenerate. There is a unique map from the
inner horn ΛS` → X1 (over ∆n

k ), and the pushout XS
1 = ∆S qΛS

`
X1 has three nice

properties:
(1) X → XS

1 is a Joyal equivalence
(2) every non-degenerate 2-simplex in XS

1 contains the vertex k, and
(3) the canonical map XS

1 → ∆n
k is injective.

Choose another set S′ 6= S as above, and let XS,S′

1 = ∆S′ qΛS′
`′
XS

1 be the
corresponding pushout. It again has the three nice properties. Continue this process
with every set of cardinality 3, containing k and not contained in {0, . . . , k}, and
call the end result X2 ∈ sSet/∆n

k
. The above properties hold (with X2 written in

place of XS
1 ), and in fact property (2) can be strengthened:

(2′) a non-degenerate 2-simplex in ∆n
k is in the image of X2 if and only if it contains

the vertex k.
If n = 2, we are done. If not, let S ⊆ {0, . . . , n} be a set of cardinality 4, such

that k ∈ S 6⊆ {0, . . . , k}, let ` be as above, and again form XS
2 = ∆S qΛS

`
X2; it has

the same nice properties (with all instances of “2” replaced by “3” and all instances
of “1” replaced by “2”). Again continue with all such S and call the final result
X3; note that it also satisfies the appropriate analogue of property (2’). If n = 3,
we are done. If not, continue forming Xi with the desired properties until n = i.

We have proven the result in case k ≥ 1. The above argument can be dualized
(by reversing the order of all the ordered sets involved). Noting that ∆n

0 is in this
sense dual to ∆n

n−1, one sees that the case k = 0 is argued dually to the case
k = n− 1 proven above.

�

Proposition A.8. For every n ≥ 0, the maps CnR → ∆1, CnL → ∆1, and Cncyl → ∆1

are Joyal equivalences.

Proof. The cases of CnR and CnL follow immediately from Lemma A.7. The case of
Cncyl also follows from that lemma by a simple calculation, which we show below.

Let {0, 1, . . . , n} and {0′, 1′, . . . , n′} denote the vertices in ∆n×{0} and ∆n×{1},
respectively; since ∆n × ∆1 is an ordered simplicial set, any simplex in it can be
represented by its sequence of vertices. There is a unique way to write ∆n × ∆1

as the union of n-many non-degenerate (n+ 1)-simplices. For example if n = 3 we
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have:

∆3 ×∆1 = ∆{0,1,2,2
′} q∆{0,1,2′} ∆{0,1,1

′,2′} q∆{0,1′,2′} ∆{0,0
′,1′,2′}

Recall that Cncyl is obtained from ∆n × ∆1 by collapsing any simplex whose
vertices are contained in {0, . . . , n} or in {0′, . . . , n′}. We can write it as the union

Cncyl
∼= ∆n

n−1 q∆n−1
n−2

∆n
n−2 q∆n−1

n−3
· · · q∆n−1

0
∆n

0 .

Each of the above maps ∆n−1
i → ∆n

i and ∆n−1
i → ∆n

i+1 are cofibrations. They are
also weak equivalences by Lemma A.7 (and two-out-of-three). Hence this colimit
is contractible, completing the proof.

�

Appendix B. The Box-product lemma

Lemma B.1. For integers 0 < k < n and r, the map

f = (Λnk → ∆n)�(∂∆r → ∆r)

is inner anodyne.

Proof. Let X = (Λnk ×∆r) qΛn
k×∂∆r (∆n × ∂∆r) and Y = ∆n ×∆r. We want to

show that f : X → Y can be written as the composition of pushouts of inner horn
inclusions. For the remainder of this proof, all simplicial sets under consideration
will denote objects of the over-category sSet/Y . Given an object Z → Y , we may
speak of simplices of Y being in Z, by which we mean that they are in the image.

Let us establish some notation. An m-simplex y in Y is determined by its
vertices, and we can denote it in the form

y =
(
a0 a1 . . . am
b0 b1 . . . bm

)
,

where 0 ≤ ai ≤ ai+1 ≤ n and 0 ≤ bi ≤ bi+1 ≤ r, for 0 ≤ i < m. It is degenerate
if and only if there exists i such that ai = ai+1 and bi = bi+1. Note that no two
non-degenerate simplices of Y share any horn. We denote the face obtained by
removing the vertex

(
ai

bi

)
from y by d(ai

bi
)(y); note that if that vertex is repeated

then it does not matter which copy we remove.
One checks that y is an element of X if and only if it satisfies one of the following

two conditions:
(i) k ∈ {a0, a1, . . . , am} 6= {0, 1, . . . , n}, -OR-

(ii) {b0, . . . , bm} 6= {0, 1, . . . , r}
Our strategy of proof is this. For 0 ≤ j ≤ r and n ≤ t ≤ n+ r, we will produce

maps X → Xt
j in sSet/Y with three properties:

(1) X → Xt
j is inner anodyne,

(2) Xt
j → Y is injective,

(3) for every t′-simplex y in Y containing a vertex
(
k
j′

)
, where t′ ≤ t and j′ ≤ j,

we have y ∈ Xt
j ,

(4) every t-simplex of Xt
j −X

n+r
j−1 contains

(
k
j

)
. When j = 0 we set Xn+r

−1 = X,
and

(5) no simplex of Xt
j −X contains a vertex

(
k′

j+1

)
for k′ < k.
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Moreover, we will have Xs
j′ ⊆ Xt

j either if j′ < j or if j′ = j′ and s ≤ t. Properties
(1), (2), and (3) are essential; Properties (4) and (5) are for bookkeeping. Since Y
is the union of its non-degenerate (n+r)-simplices and every such simplex contains
a vertex of the form

(
k
j

)
for some 0 ≤ j ≤ r, the proof will be complete once we

have done the j = r, t = n+ r case.
If g : Z → Y is an injection then for any 0 < s < t and diagram

Λts
ys //

��

Z

g

��
∆t

y
// Y,

the induced map ZqΛt
s

∆t → Y will be an injection if and only if Λts → Z does not
extend to a map ∂∆t → Z (over y).

Begin with j = 0, and let

y =
(
a0 . . . k . . . at
b0 . . . 0 . . . bt

)
(B.1)

denote an arbitrary non-degenerate t-simplex in Y −X that contains
(
k
0

)
. We will

construct Xt
0 by induction on t ≥ n.

Suppose t = n and take y as above. Note that since y is non-degenerate, d(ai
bi

) =

di. For all s 6= k, we have the face ds(y) ∈ X by (i), and hence a map yk : Λnk → X
over y. One also checks that dk(y) 6∈ X, so if we let

Xy = colim(X
yk←− Λnk → ∆n)

then X → Xy is inner anodyne and the induced map Xy → Y is injective. Note
that Xy has one new n-simplex, y, and one new (n− 1)-simplex, dk(y).

Now choose different n-simplex y 6= y′ ∈ Y −X, with
(
k
0

)
∈ y′. Again, one shows

that there is a map y′k : Λnk → Xy over y′. Note that the face dk(y′) cannot be in
Xy because one can check that it is neither in X nor in y (if it were in y then we

would have ∂y = ∂y′, hence y = y′). Let X{y,y
′} = colim(Xy y′k←− Λnk → ∆) as

above. Proceeding in this way, we add all the n-simplices of Y −X which contain(
k
0

)
, and the final result Xn

0 will satisfy the five properties.
Suppose Xt−1

0 has been constructed for some t > n, and let y ∈ Y − Xt−1
0

denote a non-degenerate t-simplex that contains
(
k
0

)
as in (B.1). By induction and

Property (3), there is a unique map yk : Λtk → Xt
0 over y; we must check that it

does not extend over d(k
0)(y). Beginning with the fact that y 6∈ X, one can argue

that d(k
0)(y) 6∈ X. Property (4) then ensures that d(k

0)(y) 6∈ Xt−1
0 . As above, let

Xy
0 = colim(X

yk←− Λtk → ∆n). Continue to add all the t-simplices of Y − Xt−1
0

which contain
(
k
0

)
, and the final result Xt

0 will satisfy the five properties. We have
completed the j = 0 case.

Suppose Xj := Xn+r
j has been constructed, for some j ≥ 0, satisfying the five

properties. Let

y =
(
a0 . . . k . . . at
b0 . . . j + 1 . . . bt

)
denote an arbitrary non-degenerate t-simplex in Y −Xj containing

(
k
j+1

)
.
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Note that since y 6∈ Xj , it contains no vertex of the form
(
k
j′

)
for j′ ≤ j, by

Property (3. Also, y cannot be of the form
(
a0 . . . k′ k . . . at
b0 . . . j′ j + 1 . . . bt

)
, for

k′ < k and j′ ≤ j, because if it were then it would be a face of the simplex(
a0 . . . k′ k k . . . at
b0 . . . j′ j′ j + 1 . . . bt

)
, which is in Xj by (3). In other words, an

arbitrary t-simplex in Y −Xj must be of the form

y =
(
a0 . . . k′ k . . . at
b0 . . . j + 1 j + 1 . . . bt

)
(B.2)

for some k′ < k. We will construct each Xt
j+1 by induction on t ≥ n.

Suppose t = n; as usual, it is easy to see that there is a unique map Λnk → Xj

over y and our job is to show that it does not extend to ∂∆n. In other words, we
must show that the face d( k

j+1)(y) is not in Xj . One argues that it is not in X, and
it is not in Xj − X by Property (5), so it is not in Xj . Continue to add all the
n-simplices of Y − Xj containing

(
k
j+1

)
, and the final result Xn

j+1 will satisfy the
five properties.

Suppose Xt−1
j+1 has been constructed for some t > n, and let y ∈ Y − Xt−1

j+1 ⊆
Y −Xj be a t-simplex that contains

(
k
j+1

)
as in (B.2). By induction and Property

(3), there is a unique map Λtk → Xt−1
j+1 over y and it only remains to show that

d( k
j+1)(y) is not in Xt−1

j+1. Again, one argues that it is not in X, and it is not in

Xt−1
j+1 by Property (5), so we are done.
With the induction now complete, the result is that we can find X → Xn+r

r →
Y satisfying properties (1) - (5). The point is to realize that Xn+r

r → Y is an
isomorphism. It is injective by Property (2), and it is surjective by Property (3),
since Y is the union of its (n+r)-simplices and each such simplex contains a vertex
of the form

(
k
s

)
for some s ≤ r.

�
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