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The new world of interconnected-everything brings new challenges to those who wish

to understand it and keep society safe from unintended and unimagined consequences.

With constant communication and feedback loops being the norm, the space of behaviors

is too large to analyze by simulation alone. Today’s nearly unlimited computational power

must be used more wisely, so that our knowledge of a system can evolve along with the

system itself. New mathematical techniques are needed to provide the algebraic formulas

for combining our insights, just as we combine components, allowing us to anticipate the

behavior of an assembled system. Category theory is the mathematics of combination and

compositionality, so it is well-suited as a foundation for such work.

We propose to investigate compositional techniques for analyzing systems of all sorts.

At themathematical center ofmany disciplines, one needs to solve a systemof simultaneous

equations. As mundane, abstract, and worked-over as this may seem, a new elementary

technique was recently discovered with the potential to change how we approach such

problems. This technique is highly compositional—the solutions to subsystems can be

combined to form a solution of the whole—and it emerged out of a similarly compositional

approach to understanding the behavior of networked machines. Just as circuits can be

combined to form computers, machines of all scales can be interconnected to form more

complex machines. The common theme is compositionality: whether combining the

constraints and requirements necessary to design a robot, or combining the equations that

describe its function, our goal is to find analyses that are scalable and reusable, so that the

knowledge we gain today is efficiently utilized in the networks of tomorrow.
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0 Statement of Objectives

The distinction between part and whole becomes blurry as one moves from systems to systems
of systems; whether a system is a complete whole or a subsystem of some larger whole becomes

a matter of perspective. Thus to understand complex systems, the ability to rapidly change

perspective is becoming crucial. The desire for compositional systems must be met with a

demand for compositional analyses, so that as systems are integrated, the independent analyses

and certifications of the component systems can likewise be integrated, without loss, to

provide analyses and certifications of the larger whole.

The objective of the proposed research is to provide a wide variety of mathematically-

rigorous compositional analysis techniques, which can be applied to systems of all sorts. As a

formal underpinning for this research, we will use category theory, for which compositionality

is the core principle. Rather than focus on a particular system, such as the smart grid or the

national air space, we consider systems of all sorts: from interconnected dynamical systems,

to systems of nonlinear equations, to the systems of constraints that emerge in engineering

design.

A primary interest is to investigate a new technique for solving systems of nonlinear

equations. This technique is remarkably simple to describe: each equation is plotted as a

matrix of pixels and the approximate solution set for the entire system can be computed using

matrix multiplication and other standard matrix operations. The simplicity of this pixel matrix
technique makes it ripe for investigation and innovation. It is easily parallelizable: subsystems

can be solved independently, and the solutions compose. Unlikemostmathematical techniques,

it can be applied to raw data without requiring that it be fit to any sort of model. We will

consider not only questions of computational complexity and accuracy of this approach, but

more foundational questions as well.

Systems of equations often arise when variables are shared among interacting components

of a given sort. For example, open dynamical systems—machines whose states evolve as

they receive and send signals—can be interconnected to form larger-scale dynamical systems.

Here the signals themselves act as variables shared between machines. If a given analysis

of machines can be algebraically manipulated as the machines are interconnected, so that

properties of the whole are derivable from those of the parts, we call it a compositional analysis.

Steady states and bifurcation diagrams are examples of compositional analyses: knowing only

the steady state behavior of component systems, one can derive the steady state behavior of an

interconnected system. We will investigate other compositional analyses, such as reachability

and control. We will also explore compositionality as it shows up in engineering design, to

determine the sorts of analyses that lend themselves to large-scale team projects.

The common theme in all of this work is to formalize those conceptions of a system

which admit algebraic rules for combination, as systems of any scale become the component

parts of a larger-scale system. We aim to determine the sort of behavioral guarantees which,

made individually on parts, formulaically combine to produce behavioral guarantees on the

whole interconnected system. Such compositionality is crucial to predicting and auditing the

behavior of complex systems.
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For the purpose of exposition, we divide the proposal into two parts. Although they are

deeply analogous, the goals of the first are classical—a new technique for solving systems of

equations and inequalities—whereas those of the second address a contemporary problem,

namely compositionality in systems of systems. These two parts are discussed in Sections 1

and 2 respectively. The analogy between these two parts can be expressed in the language

of category theory, though we keep our discussion of this fact to a minimum, especially in

Section 1. Though the parts are separated in this proposal, they are really two parts of a larger

whole, and any effort spent on one will likely yield dividends in the other.

1 Research Topic 1: Pixel matrices for solving systems of relations

1.1 Introduction

The need to compute solutions to systems of equations or inequalities is ubiquitous throughout

mathematics, science, and engineering. A great deal of work is continually spent on improving

the efficiency of linear systems solvers—both for dense and sparse systems [CW87; FSH04;

GG08; DOB15]—and new algebro-geometric approaches are also being developed for solving

systems of polynomial equations [GV88; CKY89; Stu02]. Less is known for systems of arbitrary

continuous functions, and still less for systems involving inequalities or other relations [Bro65;

Mar00]. Techniques for solving nonlinear systems are often highly technical and specific to

the particular types of equations being solved. Moreover, most techniques are iterative and

thus find one solution near a good initial guess, rather than finding all solutions to the system.

It would be useful to have a new elementary technique—say, one that can be understood by

an undergraduate math major within three hours—for providing the approximate solution

set, in its entirety, for arbitrary nonlinear systems. If it were to be faster, more accurate, more

flexible, and more widely applicable than existing techniques, that would be even better.

We present a new technique, currently at a very early stage of development, with which

to find the approximate solution set for arbitrary systems of relations (nonlinear equations,

inequalities, etc.). It is elementary in the above sense, as it relies only on matrix arithmetic

applied to what we will call pixel matrices. The Pixel Matrix (PM) technique appears to be

more flexible and widely applicable than other techniques; however, it does have limitations,

and it has not yet been compared to existing techniques in terms of speed and accuracy. The

PM technique is based on category theory [Mac98; Awo10], which has been put forth as a

potential foundation for applied mathematics [Bae13], and which has already found a number

of applications throughout science and engineering [FGR03; BW90; CGR12; AC04; GSB12;

Spi14]; we will not emphasize this aspect of pixel matrices, but it exists in the background.

1.2 Motivating example

Suppose we plot the two equations x2 � w and w � 1 − y2
as graphs on a computer screen.

The result for each equation, say the first one above, will be an array of pixels—some on and

some off—that represents the set of (x , w)-points which satisfy the equation. Thus we can plot

each equation as amatrix of booleans—True’s and False’s—representing its graph; say M for the
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a. b. c. 

Figure 1: Parts a and b show plots of x2 � w and w � 1 − y2
, as pixel matrices, where each

entry is a 0 or 1. The pixel is black or "on" if that entry in the matrix is 1, and white or "off" if

that entry is 0. The graphs appear rotated 90
◦
clockwise, in order to agree with matrix-style

indexing, where the first coordinate is indexed downward and the second coordinate is

indexed rightward, rather than ordinary Cartesian-style indexing, where the first coordinate

indexed rightward and the second coordinate indexed upward. These matrices are multiplied,

and the result is shown in part c. The horizontal and vertical lines in parts a and b respectively

indicate an example row and column whose dot product is 1, hence the pixel is on at their

intersection point in part c. The fact that the result of matrix multiplication looks like a circle

is not a coincidence; it is the graph of the simultaneous solution to the system given in parts a

and b, which in this case can be rewritten to a single equation x2 � 1 − y2
.

first equation and N for the second. What happens if we multiply the two matrices together?

It turns out that the resulting pixel array MN represents the (x , y)-pairs that simultaneously

solve the two equations in the system. In other words, ordinary matrix multiplication returns

a circle, x2 + y2 � 1; see Figure 1.

This simple fact about pixel matrix multiplication MN has several cousins, including

matrix tensor product M ⊗ N and matrix trace Tr(M), which together form the basis of the

pixel matrix approach to solving systems.

The PM technique, which we will briefly discuss below, appears to be unknown, though it

is easily explained. There is nothing magical in this approach; it is simply a way to organize

substitution and existential quantification into amatrix arithmetic formalism. This is analogous

to the sense in which Gaussian elimination simply organizes the computation necessary for

solving linear systems of equations, and how matrix multiplication simply organizes the

computation necessary for composing linear transformations between vector spaces with

chosen bases. Matrices are quite diverse in their applications—for example they are used to

study directed graphs, Markov processes, finite metric spaces, linear transformations, etc.—we

simply add another member to the list: approximately solving nonlinear systems.

1.3 Systems of relations, wiring diagrams, and matrices

Suppose given a system of n equations, inequalities, or other relations R1 , . . . , Rn , each of

which includes some subset of k variables x1 , . . . , xk . Often, not every relation will use
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every variable—that is, the system is partially decomposable [Sim91]—and only some of the

variables have relevant values, the others being considered latent or internal variables [WP13].

(In Section 1.2, x and y were relevant and w was internal.)

For example, suppose we want to find all (v , z) pairs for which the following system of

three relations R1 , R2 , R3 has a solution:

R1 : x2

+ 3|x − y | − 5 � 0

R2 : y2v3 − w5 ≤ 0

R3 : ∃b. cos(b + zx) − w2

� 0

(1)

Each of the three relations can be plotted, using some range, tolerance, and level of pixel

refinement, and the result is what we have been calling a pixel matrix; at the risk of confusion,

we also denote the corresponding boolean matrix approximations by R1 , R2 , R3. One then

forms an associatedwiring diagram, which shows how variables are shared among the relations

(e.g. variable y is shared by R1 and R2):1

R1

R2 R3

S

x y

vv w z zx

(2)

The wires that emerge from the outer box are v and z, as these were the relevant variables

from the original query. The wiring diagram (1) tells us what arithmetic operations to

perform on the corresponding pixel matrices [Spi15]. Serial composition corresponds to matrix

multiplication MN , parallel composition corresponds to matrix tensor product (forming block

matrices) M ⊗ N , and feedback corresponds to partial trace Tr(M):

M N

MN M

N

M ⊗ N

M

Tr(M)

A B

C C
(3)

Thus the diagram in (2) represents the formula S � Tr

(
(R1 ⊗ Iv)R2R3

)
, where Iv is an

identity matrix. To recapitulate, in order to solve system (1), we begin by plotting the three

relations R1 , R2 , R3 and considering the plots as matrices of booleans. We then tensor matrix

R1 by an identity matrix Iv , and multiply the result with R2 and R3. This will produce a block

matrix with square (x × x)-blocks; taking the trace of each block will result in a matrix S of

booleans, which we can plot as an array of pixels. It shows the set of (v , z) pairs for which a

simultaneous solution exists. Although this procedure is quite simple—involving only matrix

arithmetic—it produces an approximate solution set for the fairly complex system (1).

1
The orientations of the boxes are not canonically associated to the system: each box can be oriented in several

ways, but all orientations give the same final result; see Section 1.5.4.
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1.4 Potential advantages of the approach

1.4.1 Simplicity and support

The simplicity of the basic approach—using pixel matrix arithmetic to solve general systems—

means that there is low barrier to entry for both researchers and users. There are many open

questions, and mathematicians and software engineers of all stripes may be able to contribute

new ideas that extend the basic seed presented above.

The technique relies on matrix arithmetic and multidimensional array handling, which

are the "bread and butter" of any computational software system, such as MATLAB or Julia.

Programming the PM technique on top of such a numerical computing environment could be

given as a final undergraduate project; for example, the current (unoptimized) implementation

involves under 500 lines of code. In other words, solving systems of relations using pixel

matrices essentially "runs for free" in these environments. Improvements in the speed of

matrix and sparse matrix arithmetic, as well as the speed of graphics processing units (GPUs),

which are adept at handling the necessary sorts of vector arithmetic, will produce immediate

improvements in the speed of the PM approach to solving nonlinear systems.

1.4.2 Propagation of true negatives

As explained above, in the PM technique, one begins to solve a system of equation by plotting

each equation as a pixel matrix, where each pixel represents a "tiny" d-dimensional rectangle.

It would be best if a given pixel were to be on (true) if and only if the equation holds for some
point inside the corresponding rectangle. However, even if this is true for the original plots,

the results lose fidelity as the matrix operations are performed. In the limit, as the mesh sizes

are decreased, the PM approximation approaches the true solution; however, at any finite

stage there will very likely be some error.

At least in certain cases it is possible to ensure that the plot of relation R includes true
negatives, i.e. that if a pixel is off (false) then no point inside the rectangle satisfies the relation.

If this holds, it is a theorem that there will be true negatives in the result of arbitrarily many

matrix calculations, used to solve the system of relations. The upshot is that one can get a

rough estimate of the solution set by pixelating with a very coarse mesh—the result of which

will be very fast—and then refine it as desired inside only those pixels that are "on".

1.4.3 Entire solution set

When bounds for each variable are chosen, the PM approach approximates the entire solution

set in the corresponding region. This is in contrast to iterative nonlinear systems solvers,

which generally find only one solution and require a good initial guess [QS93]. Using the

mesh refinement technique from Section 1.4.2, one could begin by approximating the solution

set using the PM technique, and then choose any "on"-pixel with which to seed a more

sophisticated nonlinear systems solver.
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1.4.4 Naturally parallelized

To solve large systems of relations, it is advantageous to paralellize the solution algorithm. The

wiring diagram formalism lends itself to parallelization. Any region of the wiring diagram can

be "cordoned off", and the corresponding subsystem of relations can be solved independently.

Then the results can be combined to produce the correct solution set for the whole system.2 For

example, in (4), the matrix operations needed to solve the five relations R11 , R12 , R13 , R21 , R22

can be computed by first solving the first three to form relation S1 and the last two to form S2,

according to the wiring subdiagrams shown here:

R11

R12

R13

S1

R21

R22

S2

T

(4)

We now have a system of two relations S1 and S2, and applying a matrix multiplication and

trace results in the total solution T. The computation for T proceeds from S1 and S2 without

needing any information about the internal structure—nor the relations themselves—that

went into computing the intermediate relations S1 and S2 from the given R’s. This tends to
reduce the computational complexity a great deal.

1.4.5 Solution counts and densities

As discussed above, pixel matrices have boolean entries, but the booleans can be replaced

by the elements of any semiring, meaning a set S with elements 0, 1 ∈ S and operations

+, ∗ : S × S→ S satisfying well-known properties. For example, using the natural numbers

0, 1, 2, . . . instead of the booleans, the PM approach will report the number of solutions, rather
than just the existence of a solution. Values in the semiring R+ of nonnegative reals would

instead encode solution density, encoding the expected number of solutions found within each

pixel. Other semirings may have interesting semantics as well.

1.4.6 Real data, lost equations, and machine learning

The PM technique does not require that the relations or densities (see Section 1.4.5) come

from equations or inequalities. A scientist may have raw data relating variables x and y and

more raw data relating variables y and z. A standard approach is to fit smooth functions to

these data sets and to then solve the system of simultaneous equations; however, curve-fitting

requires a choice of model. There is often a trade-off between simplicity of the model and

accuracy of the fit. Moreover, any error that does arise in this way will be an artifact of the

choice of model, adding a confounding complication to the data analysis.

The PM technique offers an alternative—solving the system directly without curve fitting—

which bypasses the above minefield completely. The pixel matrices for the data sets (including

2
Results of this sort are proved category-theoretically; as an example, see [Spi15].
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Gaussian error surrounding each data point if desired) can be multiplied directly. The ability

to work with data directly, rather than first requiring a cleanup step, may prove to be the real

value of pixel matrices.

Similarly, the notion of concept from computational learning theory is defined to be a subset

S ⊆ A, where A � A1 × · · · × An is a product of attribute spaces [KV94]. The characteristic

function of such a subset is an A-shaped array of Booleans whose support is S; in other

words, concepts are equivalent to pixel matrices. Thus it follows that composing concepts

becomes a matter of matrix arithmetic. One may perhaps "solve" for concepts: given a wiring

diagram as well as a composite concept and all but one interior concept, one could solve for

the remaining interior concept. For example, one might use something like (block) singular

value decompositions of the given interior concepts to find a best fit for the remainder.

Pixel matrices may also offer pedagogical clarification or suggest new directions inmachine

learning and artificial neural networks. Typically, a multilayer neural network involves a

variety of hidden layers, each of which consists of a matrix multiplication step followed by an

activation function [EMA12]. Both of these have analogies in terms of pixel matrices—matrix

multiplication corresponds to a certain way that variables are shared, and application of a

activation function, such as the rectifier x 7→ max(0, x), corresponds to something like a "green

screen" for pixel matrices: one discards all data of a certain sort. Other matrix operations may

also have correlates in this context; for example the partial trace operation may be employable

to study the effects of feedback in recurrent neural networks.

1.5 Research directions

While the basic idea is simple and can be put directly to use, there is work to be done to

evaluate and improve the pixel matrix technique. For example, there are questions regarding

computational complexity, accuracy, and sampling procedures, as well as how to most

efficiently orient and group the relations in a system. There is also an opportunity to find

innovative applications and extensions to the PM technique itself. We briefly describe each of

these research directions.

1.5.1 Sampling

Pixel matrices allow one to combine a system of plotted relations to obtain a plot of their

simultaneous solutions, but plotting each individual relation remains difficult. The current

PM implementation does this by sampling, but the sampling method could easily be improved,

perhaps using something like interval arithmetic [Fat92].

1.5.2 Accuracy

Each pixelated relation may be assigned an error bound, e.g. the maximum distance (say, in

the L∞-metric) from a false positive to the nearest true positive. Even for a perfectly plotted

relation, this will generally be nonzero because pixels have nonzero radius. One can ask: given

an error bound on each plotted relation Ri , and given a wiring diagram as in (2) describing a

sharing of variables between the relations, what is the error bound on the result? Another
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avenue would be to use probabilistic—rather than boolean—pixels to mitigate the cost of

under-sampling.

1.5.3 Computational complexity

It is important to understand the computational complexity of the PM technique, in various

cases. A common special case is when the relations involved are all equations—as opposed to

inequalities or arbitrary relations—in which case each pixel matrix is sparse (codimension

1), greatly reducing the computational complexity of the matrix calculations. For example,

plotting x2 + y2 � 1 is much faster by using sparse matrix multiplication for functions x2 � w
and w � 1 − y2

, as in Section 1.2, than by using pure brute force sampling of the original

equation.

For general relations, it appears that we can bound the complexity by clustering the

relations in terms of links, and then exponentiating the maximal number of links over all the

clusters. Proving and/or sharpening such bounds is a high priority for communicating the

value of the PM approach. Even if it proves to be slower or not substantially faster than other

techniques (which naively one may expect, given the exponential blowup in the number of

local variables), it is worth exploring whether one can extract compositional data from these

matrices, which still offer some sort of information about the solution set while being more

computationally efficient.

1.5.4 Orientations and grouping

The wiring diagram for a system is naturally unoriented; that is, the boxes natively have

no notion of inputs and outputs, only ports.3 Dropping orientation, a box corresponds to

an n-ary array, which we organize into a block matrix in order to utilize matrix arithmetic.

Understanding the most efficient way to choose orientations is a part of the methodology that

remains unexplored.

For example, consider the wiring diagram below representing an operation on two 60 × 80

pixel arrays, M1 and M2:

M1 M2

60 80 60

The result will be a 60-entry pixel vector, but there are several equivalent ways to calculate it.

Three options are shown diagrammatically below:

M1 M2

80

60

60

M1

M2
80

60

80

M1 M2

60

80

3
Though note that orientation does make sense in many applications, e.g. dynamical systems (as in Section 2),

where one does have a notion of input and output variables.



Research Topic 2: Systems of interconnected machines 13

Each of these corresponds to a different sequence of matrix operations: multiplication, adding

columns of 0’s, tracing blocks, etc., and the computational complexities can vary greatly.

Deciding the most efficient way to group the system is an important open question.

1.5.5 Categorical structure

Because pixelmatrices are always approximations to the "real" plot (amatrixwhose dimensions

are uncountably infinite), they form a domain in the sense of Dana Scott [Sco70]. It is important

to explore the categorical structure that arises from putting these domains together to solve

systems.

There is much more categorical structure to be understood here. For example, it is virtually

cost-free, computationally speaking, to change a variable by an invertible affine transformation.

That is, given a plot of solutions where x2 + y2 � 1, for x , y ∈ [−1, 1], precisely the same plot

represents solutions to the equation (5x)2 + (2y − 5)2 � 1, where x ∈ [−0.2, 0.2] and y ∈ [2, 3].
Other such transformations (e.g. using order-preserving maps to change the mesh-size) are

similarly cost-free, and it would be useful to neatly arrange the cost-free operations into a

category-theoretic structure.

Each pixelation is in fact an idempotent monad, or closure operation, on the monoidal

category of relations, and the pixelated plots are the algebras for such monads. This may

or may not be a useful perspective, but we include it here in order to point to the broad

range of what should be considered further. Articulating categorical structures often leads

to a deeper understanding, but it can also provide new ways of analyzing solutions without

actually computing them. This depends on finding new compositional analysis techniques, as

discussed below in Section 2.3. In fact, we will see in Section 2 that the PM technique itself

was originally discovered as a compositional analysis of dynamical systems.

1.5.6 Innovations

There appears to be a great deal of room for finding innovative applications and extensions to

the PM technique. The idea is simple enough that it can be explained easily and a prototype

can be programmed quite rapidly. It follows that finding new applications areas should not

be challenging, and the exemplary application domains should be catalogued. Innovations to

the technique are similarly quite likely. There are many directions from which substantial

improvements could be forthcoming, given the resources to explore them.

2 Research Topic 2: Systems of interconnected machines

2.1 Introduction

The pixel matrix technique, discussed in Section 1, stemmed from a similar technique for

computing the steady states of coupled dynamical systems. Dynamical systems—which

we think of as machines that take in time-varying input, change their state accordingly, and

produce time-varying output—can be wired together into systems. That is, one machine feeds

its output to another machine as input, and all together they produce an interconnected "net"
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machine. Determining what can be known about this net machine, given knowledge of the

components that compose it, is becoming crucial in the modern world.

Cyber-physical systems, the Internet of Things (IoT), smart cities, etc., provide examples

of an emerging technological paradigm where the mathematics of interconnection should

play a major role. Hardware and software components, at scales from micro-processors to

self-driving cars, built by different manufacturers for different purposes, will be put together

in a myriad of novel arrangements. The interaction between these components will be highly

complex—multiple feedback loops being the norm—and it is important to be able to quickly

put bounds on the outcome of such interactions.

As an example of what one might desire, consider the following analogy with pharma-

ceutical drugs. The federal Food and Drug Administration requires that each drug be sold

with a package insert, or label, providing information that explains how to use the product,

what the active ingredients are, what types of symptoms may indicate an adverse event, what

other drugs to avoid, etc. The purpose of these drug labels is to provide patients with an

understanding of how they can use the drug in combination with other products and lifestyle

choices (driving, sun-exposure, etc.) to minimize harmful side-effects. In an analogous way,

casual and professional users of cyber-physical systems need to understand what to expect

when they linke these systems in novel combinations with one another and use them in

various environments.

In this section, we will discuss what sorts of "labels" might be appropriate when putting

machines together in combination. For example, if a video camera is aimed at the screen

to which it sends signals, how are the consequences similar to or different than when a

microphone is placed near the loudspeaker to which it sends signals? Each involves a feedback

loop, but only one is destructive. Could this fact be calculated in advance, without requiring

the input of human experience and expertise?

2.2 Wiring diagrams and open dynamical systems

We will seek mathematical attributes that one can observe in component machines, with

the rule that regardless of how the component machines may be wired together, one can

formulaically decide the resulting attributes of the total, "net" machine. Certainly not all

atributes have this property; we have been calling those that do "compositional", and we will

describe this notion in more detail in Section 2.3.

Each component machine has some interface X, consisting of input and output ports; we

say that the machine inhabits the interface. These interfaces can be be put together in series or

parallel

X1 X2

Y X1

X2

Y

(5)
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or in more complex combinations, possibly with feedback and splitting wires

X1

X2

Y
X1

X2

Y

(6)

An open dynamical system is a type of machine that has a set or space of states and a rule for

how its state changes in time. Signals passed to the system through its input ports influence

how the state changes. An output signal is generated as a function of the state, and it is then

passed through an output port to serve as an input to a neighboring system.

Interconnected dynamical systems have been studied for years, e.g. often under the name

coupled cell networks, by Golubitsky, Stewart, and collaborators [EG93; DGS96a; DGS96b; SGP03;

GS06; SP07], as well as many others [GH99; Agu+11; DL15; VSL15]. We can study many sorts

of dynamical systems, including discrete and continuous models, but for the purposes of this

proposal, we speak about dynamical systems in the abstract.

Category-theoretically, we consider dynamical systems as forming a certain algebra on the

operad of wiring diagrams [Spi15]. That is, to each interface X, we associate the set DS(X) of
all open dynamical systems D which have that interface, i.e. which accept input signals and

produce output signals of the specified type. To each wiring diagram ϕ : X1 , . . . ,Xn → Y, we

associate a formula DS(ϕ) : DS(X1) × · · · ×DS(Xn) → DS(Y), which takes a tuple (D1 , . . . ,Dn)
of dynamical systems—where dynamical system Di inhabits inner box Xi—and produces a

dynamical system E � DS(ϕ)(D1 , . . . ,Dn) ∈ DS(Y) inhabiting the outer box Y. These formulas

must be functorial, in the sense of category theory, to ensure that nesting wiring diagrams

within wiring diagrams is a coherent operation.

2.3 Compositional analysis of machines

Compositional analysis of open dynamical systems is an important concept in applications.

An analysis is compositional if, rather than be applied to a whole composite system, it can be

applied to the subsystems independently and the results compiled to give the global result.

As a simple example, averaging is not a compositional analysis. Indeed, suppose we want

to compute the average age of US city-dwellers. If there are n cities C1 , . . . , Cn , with average

ages c1 , . . . , cn , the overall average age is notmerely the average of c1 , . . . , cn , because each city

presumably has a different number of people. Knowing just the averages ci is almost useless

information in that it cannot be used in further calculations; one might say such analyses are

truncating, as opposed to compositional. In contrast, if one knows not only the average age ci

but also the population size pi for each city, then one can calculate both the overall average

and the overall population size. Thus the attribute pair (population size, average age) forms a

compositional analysis of US cities.

Compositional analyses are robust to redesign. Large-scale systems are built from many

component systems, each of which has many parts and subparts, down to micro-scales.

Improvements can arise from reconfiguring these parts at any level of a hierarchy (which can
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Figure 2: Compositional analyses facilitate the computation of global invariants, under

rearrangement and replacement of internal components.

itself be re-conceived). As design changes become more frequent, it is important for analysis

techniques to be compositional so that prior work is not lost as systems evolve.

We propose to search for a wide range of compositional analyses to describe machines of

all sorts. One example of such a result is that steady states constitute a compositional analysis

[Spi15]. This result is quite similar to the pixel matrix technique discussed in Section 1;

indeed the latter was an extension of the former. The basic idea is to associate to every open

dynamical system X, inhabiting a box A B, a matrix M of steady states. The rows of matrix

M correspond to the possible input signals a ∈ A and the columns represent possible output

signals b ∈ B. The entry in Ma ,b is the number of states in X which are fixed by input a and

which output b. We call M the steady state matrix for the dynamical system X. If the system

has only a finite number of possible input and output values, M will be a standard (finite-size)

matrix; however, when A and B are Euclidean spaces, e.g. A � B � R, the steady state matrix

is quite similar to what is generally known as a bifurcation diagram.

The interesting result is that as dynamical systems are composed in series, parallel, or

with feedback, the steady state matrices are respectively multiplied, tensored, or traced (again

analogous with pixel matrices; see Section 1.3). In fact, any wiring diagram corresponds to a

combination of matrix arithmetic operations: matrices independently form an algebra on the

operad of wiring diagrams. When these formulas are applied to the steady state matrices of

component systems, the result is the steady state matrix of the net, interconnected system.

X1

X2

X3

X4

X5

Y

(7)

In other words, steady state matrices and bifurcation diagrams constitute compositional

analyses.
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2.4 Compositional behavior contracts

In our view, one of the most important compositional analyses for the coming age is what we

call compositional behavior contracts.4 Analogous to guaranteesmade by prescription drug labels,

as discussed in Section 2.1, producers of machines at all scales could offer some guarantees

about how their machine will behave given the receipt of certain input signals. For example,

they could provide data about steady states behavior, or about reachability or controllability.

In a world where various machines will be interconnected in ways unforeseen by their

designers, it is important that their behavioral guarantees are compositional. Only then will

an engineer, who interconnects these machines in a novel way, be able to in turn produce a

guarantee about its overall behavior.

As a simple example, consider two synchronized discrete-time machines X1 ,X2 wired in

series to form a machine Y:

X
1

X
2

Y

Suppose that machine X1 satisfies the contract "Whenever I receive three True’s in a row, I

will output a False within five seconds", and that machine X2 satisfies the contract "Whenever

I receive a False, I will output a True within two seconds." Then the designer of Y, without

knowing the internals of X1 and X2 can still guarantee that Y satisfies the contract "Whenever

I receive two True’s in a row, I will output a True within seven seconds."

Compositional contracts would greatly facilitate safety and failure analysis. Whenever an

interconnected system violates its contract, we would be mathematically assured that either

there is a connection problem—i.e. components are not wired together as advertised5—or

that one of the system elements has violated its contract. We can then recursively dive down

to precisely determine which actor violated its contract and hence is responsible for the

outwardly-visible contract violation.

2.5 Dynamic reconfiguration in mode-dependent networks

Analysis becomes highly complex when the signals that arrive at individual components in

a system cause a reconfiguring of the interconnection pattern itself, i.e. a change in the network

topology. This takes place constantly in the world of human business relationships (e.g. one

company can engage or disengage the services of another), but it is just as ubiquitous in

computer networks. A switch is a component that takes in signals and uses them to change the

4
Composing financial contracts has been previously considered in terms of functional programming (a close

cousin of category theory) [JES00]. Although such work is inspirational, the scope that we propose here is quite a

bit broader, and the mathematical formalism is more explicit.

5
Unexpected interactions between component systems is a sort of connection problem, because in such cases

the wiring diagram has failed to express all the communication that exists between the subsystems. For example,

in a physical system, vibrating parts can often cause resonance that damages other components. This interaction

can be regarded as an unexpected signal from one component to another, which should have been captured in

the wiring diagram. Although we do not discuss it here, it is important to have many levels of analysis—logical,

functional, operational, physical, etc.—and these analyses must be comparable and integrable. Category theory is

well-tuned to this sort of comparison and integration of analyses.
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topology of the network. A communication network is also reconfigured when sensors move

or when smartphone users move between wireless access points. Similarly, online learning by

neural networks requires continual updating of weight matrices in order to accommodate

changing observations [CSC06].

Mode-dependent networks of open dynamical systems have the property that changes in

the internal states of each component lead to changes in the topology of the network that

connects them. In [ST15], it was shown that mode-dependent networks also form an operad,

meaning they can be nested hierarchically. Each component has a communicative mode, which

is a function of its current internal state, and the tuple of all communicative modes determines

the changing shape of the wiring diagram that interconnects them.

It would be useful to find compositional analyses for mode-dependent systems. For

example, one could consider a set of components to be autonomous to the extent that their set

of communicative modes determines their interconnection pattern. Such autonomy may not

occur when a powerful authority is present: who communicates with who is to some extent

determined by the authority. It would be interesting to investigate whether the autonomy of

components can be measured and made compositional.

Other potential compositional invariants may include measures of the extent to which

reconfiguration is taking place in subsystems. That is, if we can quantify the degree of

reconfiguration for each subsystem, as well as for the subsystems in the larger system, it

should be possible (given the right formalism) to calculate the degree of reconfiguration in

the whole system. Issues like this one are related to the predictability and auditability of a

system’s outward behavior.

While the mode-dependent framework describes dynamically-changing networks of

systems—and the hierarchical nesting thereof—it may not adequately articulate issues relevant

to management and administration of resources [Sim65]. For example, it does not address

the hierarchies of time-scales necessary for planning, nor does it address notions of values

(what a system is aiming to achieve), decision-making, etc. While we are not wedded to the

precise definition of mode-dependent networks described in [ST15], we are committed to the

operadic formalism, in which compositionality, and the relationship between part and whole,

are paramount. A philosophical approach that may be worth exploring is that of holonic

networks [KS69; Mel09].

2.6 Designing complex systems

Another place where we find networks is in the engineering design process, where the

requirements of one component must be met by the functionality of another [FKS95; EJ96].

For example, when constructing a simple mobile robot, one must design the chassis and the

motor [Cen16a]. In order for the chassis to attain a given velocity with given extra payload

capacity, it requires a certain torque and speed from the motor. To attain a given torque and

speed, the motor certainly requires a certain voltage and current. But more interestingly, a

better motor also weighs more. This creates a feedback loop: the chassis must carry the extra

weight of the motor, which in turn delivers more power to the chassis.

In Censi’s theory of co-design, design problems are, to the outside world, relationships
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Σ Chassis Motor

Σ

Extra payload

Velocity

Voltage

Current

Cost $

Torque

Speed

Cost $

Motor

weight

Figure 3: A co-design problem, adapted from [Cen16b].

between functionality provided and resources required. However, design problems may be

broken down into interacting sub-problems, and these interactions are captured in terms of

wiring diagrams, as shown in Figure 3. In other words, co-design problems form another

algebra on the operad of wiring diagrams. The mathematical theory of co-design developed

by Censi in [Cen16a; Cen16b] is ripe for category-theoretic interpretation. Indeed Censi

writes, "Category theory is the right formalism: functionality and resources are the objects in

a category and the design problems are the morphisms of the category." A design problem can

be formulated as a monotonic map from a poset of "functionality" to the downward-closed

subsets of a "resource requirements" poset; such a map is also known as a Boolean-enriched

profunctor.

Once given a system of co-design problems, Censi’s algorithm produces a system of

discrete dynamical systems, which take input anti-chains (Pareto optimal subsets) to output

anti-chains. The optimal result of the co-design problem is a fixed point, or steady state, of the

dynamical system. It would be worthwhile to construct a category-theoretic formalism of

this entire approach, from co-design problem to dynamical system, to steady states, all using

compositional mappings, as discussed in Section 2.3. Censi and the PI hope to produce such

formal connections in the coming years.
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A Assurances

A.1 Environmental impacts

This research is purely mathematical, and thus it will have no environmental impacts;

compliance with environmental statutes and regulations is thereby assured.

A.2 Principle investigator (PI) time

The PI will spend 33% of his effort in year 1, and 45% of his effort in years 2–5. He also plans

to hire postdocs and student research assistants to work on the project throughout its duration.

There are no plans at this time to support graduate students on the project.

Current Projects and Pending Proposals The PI has three current projects—totaling 9.5

calendar months per year of support for the PI—and no pending proposals at this time. The

current projects are

1. A five-year (2013–2018) AFOSR grant, titled "Categorical approach to agent interaction".

This grant focuses on communication between agents, including information integration,

communication protocols, and database queries. The PI is currently devoting 9 calendar

months per year to this project.

2. A three-year (2014–2017) NASA grant, titled "Category-theoretic approaches for the

analysis of distributed systems". Although the title sounds similar to the present one, the

work is quite different. It is a 6.2 (applied research) program, and MIT is a subcontractor

of Honeywell International Inc. The goal is to understand the National Air Space (NAS)

as a distributed system; in particular, we focus on ensuring the safe separation (collision

avoidance) of aircrafts. While some of the ideas for the current proposal stemmed from

the NASA project, the current work will consist of fundamental math research, rather

than NAS-specific applications. The PI is currently devoting 0.5 calendar months per

year to this project.

3. A 1-year (2016) NSF grant, titled "Solving Information-Integration Problems Using

Category Theory". This is an I-Corps Team program, for commercialization of database

integration technology. The PI is no longer contributing, i.e. is devoting 0 calendar

months per year to this project.

Budgets are included in Section B.

A.3 Facilities

MIT provides basic office space and library services for faculty and research staff.

The campus at the Massachusetts Institute of Technology is networked by both a wired

100/1000Mbps Ethernet LAN and the campus-wide 802.11a/b/g/n wireless networks. MIT

utilizes both proprietary and open source workstations and servers, including Linux, Unix

and Macintosh platforms. In addition to office workstations, MIT provides clusters of
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workstations throughout campus running a customized distribution of Linux derived from

Ubuntu. Network security is provided by the Kerberos authentication protocol.

The Math Department maintains its own subnet and domain, and provides separate email,

file storage, computational, and internet services for faculty and staff over a Gigabit Ethernet

LAN. Faculty workstations run Fedora Linux, and department servers run Ubuntu Linux and

Fedora Linux. The department maintains 4 workstation clusters running Fedora Linux, and a

variety of network printing services are available for networked computers.

A.4 Special test equipment

None.

A.5 Equipment

None.

A.6 High performance computing availability

Not needed.
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B Budgets for existing projects

B.1 AFOSR

PI Name: David Spivak
Sponsor: AFOSR

Title: Categorical approach to agent interaction
Period: 12/01/13 - 11/30/18

# OF 12/01/13 12/01/14 12/01/15 12/01/16 12/01/17 GRAND
MONTH 11/30/14 11/30/15 11/30/16 11/30/17 11/30/18 TOTAL

PERSONNEL
  David Spivak 8.9 MOS 60,828 62,653 64,532 66,468 68,462 322,944
  RA PhD (0.5-0.3) 6.2-3.9 MOS 14,570 17,823 15,974 14,082 12,144 74,594
  Total Salaries & Wages 75,398 80,476 80,507 80,550 80,607 397,538
  Employee Benefits 17,032 17,543 18,069 18,611 19,169 90,424
  Vacation Accrual 5,170 5,325 5,485 5,650 5,819 27,450
  Sub-Total of Fringe Benefits 22,202 22,868 23,554 24,261 24,989 117,875
TOTAL PERSONNEL COSTS 97,600 103,344 104,061 104,811 105,596 515,413

OPERATING EXPENSES
  Domestic Travel 2,000 2,000 2,000 2,000 2,000 10,000
  Foreign Travel 2,500 2,500 2,500 2,500 2,500 12,500
  Consultant 20,000 0 0 0 0 20,000
  RA Tuition - Not MTDC Base 9,523 11,763 10,645 9,475 8,251 49,656
TOTAL OPERATING EXPENSES 34,023 16,263 15,145 13,975 12,751 92,156

TOTAL DIRECT COSTS 131,624 119,607 119,206 118,786 118,346 607,569
OVERHEAD (F&A) 68,376 60,393 60,794 61,214 61,654 312,431
TOTAL PROPOSAL COSTS 200,000 180,000 180,000 180,000 180,000 920,000

MTDC Base 122,100 107,844 108,561 109,311 110,096 557,913
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B.2 NASA

Phase/Year 1 Phase/Year 2 Phase/Year 3
# OF 06/01/14 06/01/15 06/01/16 GRAND

MONTH 05/31/15 05/31/16 05/31/17 TOTAL

PERSONNEL
  David Spivak 0.5 MOS 3,483 3,587 3,695 10,766
  Postdoc 8.8-9.5 MOS 43,957 43,896 43,788 131,641
  Total Salaries & Wages 47,440 47,483 47,483 142,407
  Employee Benefits 12,412 12,346 12,346 37,104
  Vacation Accrual 4,250 4,274 4,274 12,797
  Sub-Total of Fringe Benefits 16,663 16,619 16,619 49,901
TOTAL PERSONNEL COSTS 64,103 64,103 64,103 192,308

TOTAL DIRECT COSTS 64,103 64,103 64,103 192,308
OVERHEAD (F&A) 35,897 35,897 35,897 107,692
TOTAL PROPOSAL COSTS 100,000 100,000 100,000 300,000

MTDC Base 64,103 64,103 64,103 192,308

PI Name: David Spivak
Sponsor: Honeywell/NASA

Title: Category-theoretic Approaches for the Analysis of Distributed Systems
Period: 06/01/14 - 05/31/17
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B.3 NSF

SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL SCHOLARS

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)
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